Metamath Proof Explorer


Theorem homfval

Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homffval.f F=Hom𝑓C
homffval.b B=BaseC
homffval.h H=HomC
homfval.x φXB
homfval.y φYB
Assertion homfval φXFY=XHY

Proof

Step Hyp Ref Expression
1 homffval.f F=Hom𝑓C
2 homffval.b B=BaseC
3 homffval.h H=HomC
4 homfval.x φXB
5 homfval.y φYB
6 1 2 3 homffval F=xB,yBxHy
7 6 a1i φF=xB,yBxHy
8 oveq12 x=Xy=YxHy=XHY
9 8 adantl φx=Xy=YxHy=XHY
10 ovexd φXHYV
11 7 9 4 5 10 ovmpod φXFY=XHY