Metamath Proof Explorer


Theorem homffn

Description: The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homffn.f F=Hom𝑓C
homffn.b B=BaseC
Assertion homffn FFnB×B

Proof

Step Hyp Ref Expression
1 homffn.f F=Hom𝑓C
2 homffn.b B=BaseC
3 eqid HomC=HomC
4 1 2 3 homffval F=xB,yBxHomCy
5 ovex xHomCyV
6 4 5 fnmpoi FFnB×B