| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homffval.f |
|- F = ( Homf ` C ) |
| 2 |
|
homffval.b |
|- B = ( Base ` C ) |
| 3 |
|
homffval.h |
|- H = ( Hom ` C ) |
| 4 |
|
homfval.x |
|- ( ph -> X e. B ) |
| 5 |
|
homfval.y |
|- ( ph -> Y e. B ) |
| 6 |
1 2 3
|
homffval |
|- F = ( x e. B , y e. B |-> ( x H y ) ) |
| 7 |
6
|
a1i |
|- ( ph -> F = ( x e. B , y e. B |-> ( x H y ) ) ) |
| 8 |
|
oveq12 |
|- ( ( x = X /\ y = Y ) -> ( x H y ) = ( X H Y ) ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x H y ) = ( X H Y ) ) |
| 10 |
|
ovexd |
|- ( ph -> ( X H Y ) e. _V ) |
| 11 |
7 9 4 5 10
|
ovmpod |
|- ( ph -> ( X F Y ) = ( X H Y ) ) |