Step |
Hyp |
Ref |
Expression |
1 |
|
homffval.f |
|- F = ( Homf ` C ) |
2 |
|
homffval.b |
|- B = ( Base ` C ) |
3 |
|
homffval.h |
|- H = ( Hom ` C ) |
4 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
5 |
4 2
|
eqtr4di |
|- ( c = C -> ( Base ` c ) = B ) |
6 |
|
fveq2 |
|- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
7 |
6 3
|
eqtr4di |
|- ( c = C -> ( Hom ` c ) = H ) |
8 |
7
|
oveqd |
|- ( c = C -> ( x ( Hom ` c ) y ) = ( x H y ) ) |
9 |
5 5 8
|
mpoeq123dv |
|- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) = ( x e. B , y e. B |-> ( x H y ) ) ) |
10 |
|
df-homf |
|- Homf = ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) ) |
11 |
2
|
fvexi |
|- B e. _V |
12 |
11 11
|
mpoex |
|- ( x e. B , y e. B |-> ( x H y ) ) e. _V |
13 |
9 10 12
|
fvmpt |
|- ( C e. _V -> ( Homf ` C ) = ( x e. B , y e. B |-> ( x H y ) ) ) |
14 |
|
fvprc |
|- ( -. C e. _V -> ( Homf ` C ) = (/) ) |
15 |
|
fvprc |
|- ( -. C e. _V -> ( Base ` C ) = (/) ) |
16 |
2 15
|
eqtrid |
|- ( -. C e. _V -> B = (/) ) |
17 |
16
|
olcd |
|- ( -. C e. _V -> ( B = (/) \/ B = (/) ) ) |
18 |
|
0mpo0 |
|- ( ( B = (/) \/ B = (/) ) -> ( x e. B , y e. B |-> ( x H y ) ) = (/) ) |
19 |
17 18
|
syl |
|- ( -. C e. _V -> ( x e. B , y e. B |-> ( x H y ) ) = (/) ) |
20 |
14 19
|
eqtr4d |
|- ( -. C e. _V -> ( Homf ` C ) = ( x e. B , y e. B |-> ( x H y ) ) ) |
21 |
13 20
|
pm2.61i |
|- ( Homf ` C ) = ( x e. B , y e. B |-> ( x H y ) ) |
22 |
1 21
|
eqtri |
|- F = ( x e. B , y e. B |-> ( x H y ) ) |