Metamath Proof Explorer


Definition df-homf

Description: Define the functionalized Hom-set operator, which is exactly like Hom but is guaranteed to be a function on the base. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Assertion df-homf
|- Homf = ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chomf
 |-  Homf
1 vc
 |-  c
2 cvv
 |-  _V
3 vx
 |-  x
4 cbs
 |-  Base
5 1 cv
 |-  c
6 5 4 cfv
 |-  ( Base ` c )
7 vy
 |-  y
8 3 cv
 |-  x
9 chom
 |-  Hom
10 5 9 cfv
 |-  ( Hom ` c )
11 7 cv
 |-  y
12 8 11 10 co
 |-  ( x ( Hom ` c ) y )
13 3 7 6 6 12 cmpo
 |-  ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) )
14 1 2 13 cmpt
 |-  ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) )
15 0 14 wceq
 |-  Homf = ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) )