Description: Define the functionalized Hom-set operator, which is exactly like Hom but is guaranteed to be a function on the base. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-homf | |- Homf = ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | chomf | |- Homf |
|
1 | vc | |- c |
|
2 | cvv | |- _V |
|
3 | vx | |- x |
|
4 | cbs | |- Base |
|
5 | 1 | cv | |- c |
6 | 5 4 | cfv | |- ( Base ` c ) |
7 | vy | |- y |
|
8 | 3 | cv | |- x |
9 | chom | |- Hom |
|
10 | 5 9 | cfv | |- ( Hom ` c ) |
11 | 7 | cv | |- y |
12 | 8 11 10 | co | |- ( x ( Hom ` c ) y ) |
13 | 3 7 6 6 12 | cmpo | |- ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) |
14 | 1 2 13 | cmpt | |- ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) ) |
15 | 0 14 | wceq | |- Homf = ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) ) |