| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homfeqbas.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 2 |
1
|
dmeqd |
|- ( ph -> dom ( Homf ` C ) = dom ( Homf ` D ) ) |
| 3 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 5 |
3 4
|
homffn |
|- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 6 |
5
|
fndmi |
|- dom ( Homf ` C ) = ( ( Base ` C ) X. ( Base ` C ) ) |
| 7 |
|
eqid |
|- ( Homf ` D ) = ( Homf ` D ) |
| 8 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 9 |
7 8
|
homffn |
|- ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) |
| 10 |
9
|
fndmi |
|- dom ( Homf ` D ) = ( ( Base ` D ) X. ( Base ` D ) ) |
| 11 |
2 6 10
|
3eqtr3g |
|- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 12 |
11
|
dmeqd |
|- ( ph -> dom ( ( Base ` C ) X. ( Base ` C ) ) = dom ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 13 |
|
dmxpid |
|- dom ( ( Base ` C ) X. ( Base ` C ) ) = ( Base ` C ) |
| 14 |
|
dmxpid |
|- dom ( ( Base ` D ) X. ( Base ` D ) ) = ( Base ` D ) |
| 15 |
12 13 14
|
3eqtr3g |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |