Metamath Proof Explorer


Theorem xpchomfval

Description: Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017) (Proof shortened by AV, 1-Mar-2024)

Ref Expression
Hypotheses xpchomfval.t T=C×cD
xpchomfval.y B=BaseT
xpchomfval.h H=HomC
xpchomfval.j J=HomD
xpchomfval.k K=HomT
Assertion xpchomfval K=uB,vB1stuH1stv×2nduJ2ndv

Proof

Step Hyp Ref Expression
1 xpchomfval.t T=C×cD
2 xpchomfval.y B=BaseT
3 xpchomfval.h H=HomC
4 xpchomfval.j J=HomD
5 xpchomfval.k K=HomT
6 eqid BaseC=BaseC
7 eqid BaseD=BaseD
8 eqid compC=compC
9 eqid compD=compD
10 simpl CVDVCV
11 simpr CVDVDV
12 1 6 7 xpcbas BaseC×BaseD=BaseT
13 2 12 eqtr4i B=BaseC×BaseD
14 13 a1i CVDVB=BaseC×BaseD
15 eqidd CVDVuB,vB1stuH1stv×2nduJ2ndv=uB,vB1stuH1stv×2nduJ2ndv
16 eqidd CVDVxB×B,yBg2ndxuB,vB1stuH1stv×2nduJ2ndvy,fuB,vB1stuH1stv×2nduJ2ndvx1stg1st1stx1st2ndxcompC1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf=xB×B,yBg2ndxuB,vB1stuH1stv×2nduJ2ndvy,fuB,vB1stuH1stv×2nduJ2ndvx1stg1st1stx1st2ndxcompC1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf
17 1 6 7 3 4 8 9 10 11 14 15 16 xpcval CVDVT=BasendxBHomndxuB,vB1stuH1stv×2nduJ2ndvcompndxxB×B,yBg2ndxuB,vB1stuH1stv×2nduJ2ndvy,fuB,vB1stuH1stv×2nduJ2ndvx1stg1st1stx1st2ndxcompC1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf
18 catstr BasendxBHomndxuB,vB1stuH1stv×2nduJ2ndvcompndxxB×B,yBg2ndxuB,vB1stuH1stv×2nduJ2ndvy,fuB,vB1stuH1stv×2nduJ2ndvx1stg1st1stx1st2ndxcompC1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndfStruct115
19 homid Hom=SlotHomndx
20 snsstp2 HomndxuB,vB1stuH1stv×2nduJ2ndvBasendxBHomndxuB,vB1stuH1stv×2nduJ2ndvcompndxxB×B,yBg2ndxuB,vB1stuH1stv×2nduJ2ndvy,fuB,vB1stuH1stv×2nduJ2ndvx1stg1st1stx1st2ndxcompC1sty1stf2ndg2nd1stx2nd2ndxcompD2ndy2ndf
21 2 fvexi BV
22 21 21 mpoex uB,vB1stuH1stv×2nduJ2ndvV
23 22 a1i CVDVuB,vB1stuH1stv×2nduJ2ndvV
24 17 18 19 20 23 5 strfv3 CVDVK=uB,vB1stuH1stv×2nduJ2ndv
25 fnxpc ×cFnV×V
26 fndm ×cFnV×Vdom×c=V×V
27 25 26 ax-mp dom×c=V×V
28 27 ndmov ¬CVDVC×cD=
29 1 28 eqtrid ¬CVDVT=
30 29 fveq2d ¬CVDVHomT=Hom
31 19 str0 =Hom
32 30 5 31 3eqtr4g ¬CVDVK=
33 29 fveq2d ¬CVDVBaseT=Base
34 base0 =Base
35 33 2 34 3eqtr4g ¬CVDVB=
36 35 olcd ¬CVDVB=B=
37 0mpo0 B=B=uB,vB1stuH1stv×2nduJ2ndv=
38 36 37 syl ¬CVDVuB,vB1stuH1stv×2nduJ2ndv=
39 32 38 eqtr4d ¬CVDVK=uB,vB1stuH1stv×2nduJ2ndv
40 24 39 pm2.61i K=uB,vB1stuH1stv×2nduJ2ndv