Metamath Proof Explorer


Theorem xpchomfval

Description: Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017) (Proof shortened by AV, 1-Mar-2024)

Ref Expression
Hypotheses xpchomfval.t T = C × c D
xpchomfval.y B = Base T
xpchomfval.h H = Hom C
xpchomfval.j J = Hom D
xpchomfval.k K = Hom T
Assertion xpchomfval K = u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v

Proof

Step Hyp Ref Expression
1 xpchomfval.t T = C × c D
2 xpchomfval.y B = Base T
3 xpchomfval.h H = Hom C
4 xpchomfval.j J = Hom D
5 xpchomfval.k K = Hom T
6 eqid Base C = Base C
7 eqid Base D = Base D
8 eqid comp C = comp C
9 eqid comp D = comp D
10 simpl C V D V C V
11 simpr C V D V D V
12 1 6 7 xpcbas Base C × Base D = Base T
13 2 12 eqtr4i B = Base C × Base D
14 13 a1i C V D V B = Base C × Base D
15 eqidd C V D V u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v = u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v
16 eqidd C V D V x B × B , y B g 2 nd x u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v y , f u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v x 1 st g 1 st 1 st x 1 st 2 nd x comp C 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f = x B × B , y B g 2 nd x u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v y , f u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v x 1 st g 1 st 1 st x 1 st 2 nd x comp C 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f
17 1 6 7 3 4 8 9 10 11 14 15 16 xpcval C V D V T = Base ndx B Hom ndx u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v comp ndx x B × B , y B g 2 nd x u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v y , f u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v x 1 st g 1 st 1 st x 1 st 2 nd x comp C 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f
18 catstr Base ndx B Hom ndx u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v comp ndx x B × B , y B g 2 nd x u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v y , f u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v x 1 st g 1 st 1 st x 1 st 2 nd x comp C 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f Struct 1 15
19 homid Hom = Slot Hom ndx
20 snsstp2 Hom ndx u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v Base ndx B Hom ndx u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v comp ndx x B × B , y B g 2 nd x u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v y , f u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v x 1 st g 1 st 1 st x 1 st 2 nd x comp C 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f
21 2 fvexi B V
22 21 21 mpoex u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v V
23 22 a1i C V D V u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v V
24 17 18 19 20 23 5 strfv3 C V D V K = u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v
25 fnxpc × c Fn V × V
26 fndm × c Fn V × V dom × c = V × V
27 25 26 ax-mp dom × c = V × V
28 27 ndmov ¬ C V D V C × c D =
29 1 28 eqtrid ¬ C V D V T =
30 29 fveq2d ¬ C V D V Hom T = Hom
31 19 str0 = Hom
32 30 5 31 3eqtr4g ¬ C V D V K =
33 29 fveq2d ¬ C V D V Base T = Base
34 base0 = Base
35 33 2 34 3eqtr4g ¬ C V D V B =
36 35 olcd ¬ C V D V B = B =
37 0mpo0 B = B = u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v =
38 36 37 syl ¬ C V D V u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v =
39 32 38 eqtr4d ¬ C V D V K = u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v
40 24 39 pm2.61i K = u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v