Description: Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017) (Proof shortened by AV, 1-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpchomfval.t | |
|
xpchomfval.y | |
||
xpchomfval.h | |
||
xpchomfval.j | |
||
xpchomfval.k | |
||
Assertion | xpchomfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpchomfval.t | |
|
2 | xpchomfval.y | |
|
3 | xpchomfval.h | |
|
4 | xpchomfval.j | |
|
5 | xpchomfval.k | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | simpl | |
|
11 | simpr | |
|
12 | 1 6 7 | xpcbas | |
13 | 2 12 | eqtr4i | |
14 | 13 | a1i | |
15 | eqidd | |
|
16 | eqidd | |
|
17 | 1 6 7 3 4 8 9 10 11 14 15 16 | xpcval | |
18 | catstr | |
|
19 | homid | |
|
20 | snsstp2 | |
|
21 | 2 | fvexi | |
22 | 21 21 | mpoex | |
23 | 22 | a1i | |
24 | 17 18 19 20 23 5 | strfv3 | |
25 | fnxpc | |
|
26 | fndm | |
|
27 | 25 26 | ax-mp | |
28 | 27 | ndmov | |
29 | 1 28 | eqtrid | |
30 | 29 | fveq2d | |
31 | 19 | str0 | |
32 | 30 5 31 | 3eqtr4g | |
33 | 29 | fveq2d | |
34 | base0 | |
|
35 | 33 2 34 | 3eqtr4g | |
36 | 35 | olcd | |
37 | 0mpo0 | |
|
38 | 36 37 | syl | |
39 | 32 38 | eqtr4d | |
40 | 24 39 | pm2.61i | |