Metamath Proof Explorer


Theorem fnxpc

Description: The binary product of categories is a two-argument function. (Contributed by Mario Carneiro, 10-Jan-2017)

Ref Expression
Assertion fnxpc × c Fn V × V

Proof

Step Hyp Ref Expression
1 df-xpc × c = r V , s V Base r × Base s / b u b , v b 1 st u Hom r 1 st v × 2 nd u Hom s 2 nd v / h Base ndx b Hom ndx h comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f
2 tpex Base ndx b Hom ndx h comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f V
3 2 csbex u b , v b 1 st u Hom r 1 st v × 2 nd u Hom s 2 nd v / h Base ndx b Hom ndx h comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f V
4 3 csbex Base r × Base s / b u b , v b 1 st u Hom r 1 st v × 2 nd u Hom s 2 nd v / h Base ndx b Hom ndx h comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f V
5 1 4 fnmpoi × c Fn V × V