| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppchofcl.o |
|- O = ( oppCat ` C ) |
| 2 |
|
oppchofcl.m |
|- M = ( HomF ` O ) |
| 3 |
|
oppchofcl.d |
|- D = ( SetCat ` U ) |
| 4 |
|
oppchofcl.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
oppchofcl.u |
|- ( ph -> U e. V ) |
| 6 |
|
oppchofcl.h |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
| 7 |
|
eqid |
|- ( oppCat ` O ) = ( oppCat ` O ) |
| 8 |
1
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
| 9 |
4 8
|
syl |
|- ( ph -> O e. Cat ) |
| 10 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 11 |
1 10
|
oppchomf |
|- tpos ( Homf ` C ) = ( Homf ` O ) |
| 12 |
11
|
rneqi |
|- ran tpos ( Homf ` C ) = ran ( Homf ` O ) |
| 13 |
|
relxp |
|- Rel ( ( Base ` C ) X. ( Base ` C ) ) |
| 14 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 15 |
10 14
|
homffn |
|- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 16 |
15
|
fndmi |
|- dom ( Homf ` C ) = ( ( Base ` C ) X. ( Base ` C ) ) |
| 17 |
16
|
releqi |
|- ( Rel dom ( Homf ` C ) <-> Rel ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 18 |
13 17
|
mpbir |
|- Rel dom ( Homf ` C ) |
| 19 |
|
rntpos |
|- ( Rel dom ( Homf ` C ) -> ran tpos ( Homf ` C ) = ran ( Homf ` C ) ) |
| 20 |
18 19
|
ax-mp |
|- ran tpos ( Homf ` C ) = ran ( Homf ` C ) |
| 21 |
12 20
|
eqtr3i |
|- ran ( Homf ` O ) = ran ( Homf ` C ) |
| 22 |
21 6
|
eqsstrid |
|- ( ph -> ran ( Homf ` O ) C_ U ) |
| 23 |
2 7 3 9 5 22
|
hofcl |
|- ( ph -> M e. ( ( ( oppCat ` O ) Xc. O ) Func D ) ) |
| 24 |
1
|
2oppchomf |
|- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
| 25 |
24
|
a1i |
|- ( ph -> ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) ) |
| 26 |
1
|
2oppccomf |
|- ( comf ` C ) = ( comf ` ( oppCat ` O ) ) |
| 27 |
26
|
a1i |
|- ( ph -> ( comf ` C ) = ( comf ` ( oppCat ` O ) ) ) |
| 28 |
|
eqidd |
|- ( ph -> ( Homf ` O ) = ( Homf ` O ) ) |
| 29 |
|
eqidd |
|- ( ph -> ( comf ` O ) = ( comf ` O ) ) |
| 30 |
7
|
oppccat |
|- ( O e. Cat -> ( oppCat ` O ) e. Cat ) |
| 31 |
9 30
|
syl |
|- ( ph -> ( oppCat ` O ) e. Cat ) |
| 32 |
25 27 28 29 4 31 9 9
|
xpcpropd |
|- ( ph -> ( C Xc. O ) = ( ( oppCat ` O ) Xc. O ) ) |
| 33 |
32
|
oveq1d |
|- ( ph -> ( ( C Xc. O ) Func D ) = ( ( ( oppCat ` O ) Xc. O ) Func D ) ) |
| 34 |
23 33
|
eleqtrrd |
|- ( ph -> M e. ( ( C Xc. O ) Func D ) ) |