| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppchofcl.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppchofcl.m |
⊢ 𝑀 = ( HomF ‘ 𝑂 ) |
| 3 |
|
oppchofcl.d |
⊢ 𝐷 = ( SetCat ‘ 𝑈 ) |
| 4 |
|
oppchofcl.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 5 |
|
oppchofcl.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 6 |
|
oppchofcl.h |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
| 7 |
|
eqid |
⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) |
| 8 |
1
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 10 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
| 11 |
1 10
|
oppchomf |
⊢ tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) |
| 12 |
11
|
rneqi |
⊢ ran tpos ( Homf ‘ 𝐶 ) = ran ( Homf ‘ 𝑂 ) |
| 13 |
|
relxp |
⊢ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 15 |
10 14
|
homffn |
⊢ ( Homf ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 16 |
15
|
fndmi |
⊢ dom ( Homf ‘ 𝐶 ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 17 |
16
|
releqi |
⊢ ( Rel dom ( Homf ‘ 𝐶 ) ↔ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 18 |
13 17
|
mpbir |
⊢ Rel dom ( Homf ‘ 𝐶 ) |
| 19 |
|
rntpos |
⊢ ( Rel dom ( Homf ‘ 𝐶 ) → ran tpos ( Homf ‘ 𝐶 ) = ran ( Homf ‘ 𝐶 ) ) |
| 20 |
18 19
|
ax-mp |
⊢ ran tpos ( Homf ‘ 𝐶 ) = ran ( Homf ‘ 𝐶 ) |
| 21 |
12 20
|
eqtr3i |
⊢ ran ( Homf ‘ 𝑂 ) = ran ( Homf ‘ 𝐶 ) |
| 22 |
21 6
|
eqsstrid |
⊢ ( 𝜑 → ran ( Homf ‘ 𝑂 ) ⊆ 𝑈 ) |
| 23 |
2 7 3 9 5 22
|
hofcl |
⊢ ( 𝜑 → 𝑀 ∈ ( ( ( oppCat ‘ 𝑂 ) ×c 𝑂 ) Func 𝐷 ) ) |
| 24 |
1
|
2oppchomf |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 26 |
1
|
2oppccomf |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 28 |
|
eqidd |
⊢ ( 𝜑 → ( Homf ‘ 𝑂 ) = ( Homf ‘ 𝑂 ) ) |
| 29 |
|
eqidd |
⊢ ( 𝜑 → ( compf ‘ 𝑂 ) = ( compf ‘ 𝑂 ) ) |
| 30 |
7
|
oppccat |
⊢ ( 𝑂 ∈ Cat → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 31 |
9 30
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
| 32 |
25 27 28 29 4 31 9 9
|
xpcpropd |
⊢ ( 𝜑 → ( 𝐶 ×c 𝑂 ) = ( ( oppCat ‘ 𝑂 ) ×c 𝑂 ) ) |
| 33 |
32
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 ×c 𝑂 ) Func 𝐷 ) = ( ( ( oppCat ‘ 𝑂 ) ×c 𝑂 ) Func 𝐷 ) ) |
| 34 |
23 33
|
eleqtrrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐶 ×c 𝑂 ) Func 𝐷 ) ) |