Step |
Hyp |
Ref |
Expression |
1 |
|
yonval.y |
⊢ 𝑌 = ( Yon ‘ 𝐶 ) |
2 |
|
yonval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
3 |
|
yonval.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
4 |
|
yonval.m |
⊢ 𝑀 = ( HomF ‘ 𝑂 ) |
5 |
|
df-yon |
⊢ Yon = ( 𝑐 ∈ Cat ↦ ( 〈 𝑐 , ( oppCat ‘ 𝑐 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝑐 ) ) ) ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → 𝑐 = 𝐶 ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → ( oppCat ‘ 𝑐 ) = ( oppCat ‘ 𝐶 ) ) |
8 |
7 3
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → ( oppCat ‘ 𝑐 ) = 𝑂 ) |
9 |
6 8
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → 〈 𝑐 , ( oppCat ‘ 𝑐 ) 〉 = 〈 𝐶 , 𝑂 〉 ) |
10 |
8
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → ( HomF ‘ ( oppCat ‘ 𝑐 ) ) = ( HomF ‘ 𝑂 ) ) |
11 |
10 4
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → ( HomF ‘ ( oppCat ‘ 𝑐 ) ) = 𝑀 ) |
12 |
9 11
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑐 = 𝐶 ) → ( 〈 𝑐 , ( oppCat ‘ 𝑐 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝑐 ) ) ) = ( 〈 𝐶 , 𝑂 〉 curryF 𝑀 ) ) |
13 |
|
ovexd |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝑂 〉 curryF 𝑀 ) ∈ V ) |
14 |
5 12 2 13
|
fvmptd2 |
⊢ ( 𝜑 → ( Yon ‘ 𝐶 ) = ( 〈 𝐶 , 𝑂 〉 curryF 𝑀 ) ) |
15 |
1 14
|
eqtrid |
⊢ ( 𝜑 → 𝑌 = ( 〈 𝐶 , 𝑂 〉 curryF 𝑀 ) ) |