Metamath Proof Explorer


Theorem yoncl

Description: The Yoneda embedding is a functor from the category to the category Q of presheaves on C . (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yonval.y 𝑌 = ( Yon ‘ 𝐶 )
yonval.c ( 𝜑𝐶 ∈ Cat )
yonval.o 𝑂 = ( oppCat ‘ 𝐶 )
yoncl.s 𝑆 = ( SetCat ‘ 𝑈 )
yoncl.q 𝑄 = ( 𝑂 FuncCat 𝑆 )
yoncl.u ( 𝜑𝑈𝑉 )
yoncl.h ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
Assertion yoncl ( 𝜑𝑌 ∈ ( 𝐶 Func 𝑄 ) )

Proof

Step Hyp Ref Expression
1 yonval.y 𝑌 = ( Yon ‘ 𝐶 )
2 yonval.c ( 𝜑𝐶 ∈ Cat )
3 yonval.o 𝑂 = ( oppCat ‘ 𝐶 )
4 yoncl.s 𝑆 = ( SetCat ‘ 𝑈 )
5 yoncl.q 𝑄 = ( 𝑂 FuncCat 𝑆 )
6 yoncl.u ( 𝜑𝑈𝑉 )
7 yoncl.h ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
8 eqid ( HomF𝑂 ) = ( HomF𝑂 )
9 1 2 3 8 yonval ( 𝜑𝑌 = ( ⟨ 𝐶 , 𝑂 ⟩ curryF ( HomF𝑂 ) ) )
10 eqid ( ⟨ 𝐶 , 𝑂 ⟩ curryF ( HomF𝑂 ) ) = ( ⟨ 𝐶 , 𝑂 ⟩ curryF ( HomF𝑂 ) )
11 3 oppccat ( 𝐶 ∈ Cat → 𝑂 ∈ Cat )
12 2 11 syl ( 𝜑𝑂 ∈ Cat )
13 3 8 4 2 6 7 oppchofcl ( 𝜑 → ( HomF𝑂 ) ∈ ( ( 𝐶 ×c 𝑂 ) Func 𝑆 ) )
14 10 5 2 12 13 curfcl ( 𝜑 → ( ⟨ 𝐶 , 𝑂 ⟩ curryF ( HomF𝑂 ) ) ∈ ( 𝐶 Func 𝑄 ) )
15 9 14 eqeltrd ( 𝜑𝑌 ∈ ( 𝐶 Func 𝑄 ) )