| Step |
Hyp |
Ref |
Expression |
| 1 |
|
yonval.y |
⊢ 𝑌 = ( Yon ‘ 𝐶 ) |
| 2 |
|
yonval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 3 |
|
yonval.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 4 |
|
yoncl.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 5 |
|
yoncl.q |
⊢ 𝑄 = ( 𝑂 FuncCat 𝑆 ) |
| 6 |
|
yoncl.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 7 |
|
yoncl.h |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
| 8 |
|
eqid |
⊢ ( HomF ‘ 𝑂 ) = ( HomF ‘ 𝑂 ) |
| 9 |
1 2 3 8
|
yonval |
⊢ ( 𝜑 → 𝑌 = ( 〈 𝐶 , 𝑂 〉 curryF ( HomF ‘ 𝑂 ) ) ) |
| 10 |
|
eqid |
⊢ ( 〈 𝐶 , 𝑂 〉 curryF ( HomF ‘ 𝑂 ) ) = ( 〈 𝐶 , 𝑂 〉 curryF ( HomF ‘ 𝑂 ) ) |
| 11 |
3
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 13 |
3 8 4 2 6 7
|
oppchofcl |
⊢ ( 𝜑 → ( HomF ‘ 𝑂 ) ∈ ( ( 𝐶 ×c 𝑂 ) Func 𝑆 ) ) |
| 14 |
10 5 2 12 13
|
curfcl |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝑂 〉 curryF ( HomF ‘ 𝑂 ) ) ∈ ( 𝐶 Func 𝑄 ) ) |
| 15 |
9 14
|
eqeltrd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 Func 𝑄 ) ) |