Metamath Proof Explorer


Theorem yoncl

Description: The Yoneda embedding is a functor from the category to the category Q of presheaves on C . (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yonval.y Y = Yon C
yonval.c φ C Cat
yonval.o O = oppCat C
yoncl.s S = SetCat U
yoncl.q Q = O FuncCat S
yoncl.u φ U V
yoncl.h φ ran Hom 𝑓 C U
Assertion yoncl φ Y C Func Q

Proof

Step Hyp Ref Expression
1 yonval.y Y = Yon C
2 yonval.c φ C Cat
3 yonval.o O = oppCat C
4 yoncl.s S = SetCat U
5 yoncl.q Q = O FuncCat S
6 yoncl.u φ U V
7 yoncl.h φ ran Hom 𝑓 C U
8 eqid Hom F O = Hom F O
9 1 2 3 8 yonval φ Y = C O curry F Hom F O
10 eqid C O curry F Hom F O = C O curry F Hom F O
11 3 oppccat C Cat O Cat
12 2 11 syl φ O Cat
13 3 8 4 2 6 7 oppchofcl φ Hom F O C × c O Func S
14 10 5 2 12 13 curfcl φ C O curry F Hom F O C Func Q
15 9 14 eqeltrd φ Y C Func Q