Metamath Proof Explorer


Theorem yonval

Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yonval.y Y=YonC
yonval.c φCCat
yonval.o O=oppCatC
yonval.m M=HomFO
Assertion yonval φY=COcurryFM

Proof

Step Hyp Ref Expression
1 yonval.y Y=YonC
2 yonval.c φCCat
3 yonval.o O=oppCatC
4 yonval.m M=HomFO
5 df-yon Yon=cCatcoppCatccurryFHomFoppCatc
6 simpr φc=Cc=C
7 6 fveq2d φc=CoppCatc=oppCatC
8 7 3 eqtr4di φc=CoppCatc=O
9 6 8 opeq12d φc=CcoppCatc=CO
10 8 fveq2d φc=CHomFoppCatc=HomFO
11 10 4 eqtr4di φc=CHomFoppCatc=M
12 9 11 oveq12d φc=CcoppCatccurryFHomFoppCatc=COcurryFM
13 ovexd φCOcurryFMV
14 5 12 2 13 fvmptd2 φYonC=COcurryFM
15 1 14 eqtrid φY=COcurryFM