Description: Define an opposite category, which is the same as the original category but with the direction of arrows the other way around. Definition 3.5 of Adamek p. 25. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-oppc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | coppc | |
|
1 | vf | |
|
2 | cvv | |
|
3 | 1 | cv | |
4 | csts | |
|
5 | chom | |
|
6 | cnx | |
|
7 | 6 5 | cfv | |
8 | 3 5 | cfv | |
9 | 8 | ctpos | |
10 | 7 9 | cop | |
11 | 3 10 4 | co | |
12 | cco | |
|
13 | 6 12 | cfv | |
14 | vu | |
|
15 | cbs | |
|
16 | 3 15 | cfv | |
17 | 16 16 | cxp | |
18 | vz | |
|
19 | 18 | cv | |
20 | c2nd | |
|
21 | 14 | cv | |
22 | 21 20 | cfv | |
23 | 19 22 | cop | |
24 | 3 12 | cfv | |
25 | c1st | |
|
26 | 21 25 | cfv | |
27 | 23 26 24 | co | |
28 | 27 | ctpos | |
29 | 14 18 17 16 28 | cmpo | |
30 | 13 29 | cop | |
31 | 11 30 4 | co | |
32 | 1 2 31 | cmpt | |
33 | 0 32 | wceq | |