Metamath Proof Explorer


Definition df-oppc

Description: Define an opposite category, which is the same as the original category but with the direction of arrows the other way around. Definition 3.5 of Adamek p. 25. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-oppc oppCat=fVfsSetHomndxtposHomfsSetcompndxuBasef×Basef,zBaseftposz2nducompf1stu

Detailed syntax breakdown

Step Hyp Ref Expression
0 coppc classoppCat
1 vf setvarf
2 cvv classV
3 1 cv setvarf
4 csts classsSet
5 chom classHom
6 cnx classndx
7 6 5 cfv classHomndx
8 3 5 cfv classHomf
9 8 ctpos classtposHomf
10 7 9 cop classHomndxtposHomf
11 3 10 4 co classfsSetHomndxtposHomf
12 cco classcomp
13 6 12 cfv classcompndx
14 vu setvaru
15 cbs classBase
16 3 15 cfv classBasef
17 16 16 cxp classBasef×Basef
18 vz setvarz
19 18 cv setvarz
20 c2nd class2nd
21 14 cv setvaru
22 21 20 cfv class2ndu
23 19 22 cop classz2ndu
24 3 12 cfv classcompf
25 c1st class1st
26 21 25 cfv class1stu
27 23 26 24 co classz2nducompf1stu
28 27 ctpos classtposz2nducompf1stu
29 14 18 17 16 28 cmpo classuBasef×Basef,zBaseftposz2nducompf1stu
30 13 29 cop classcompndxuBasef×Basef,zBaseftposz2nducompf1stu
31 11 30 4 co classfsSetHomndxtposHomfsSetcompndxuBasef×Basef,zBaseftposz2nducompf1stu
32 1 2 31 cmpt classfVfsSetHomndxtposHomfsSetcompndxuBasef×Basef,zBaseftposz2nducompf1stu
33 0 32 wceq wffoppCat=fVfsSetHomndxtposHomfsSetcompndxuBasef×Basef,zBaseftposz2nducompf1stu