Step |
Hyp |
Ref |
Expression |
1 |
|
yonval.y |
|- Y = ( Yon ` C ) |
2 |
|
yonval.c |
|- ( ph -> C e. Cat ) |
3 |
|
yonval.o |
|- O = ( oppCat ` C ) |
4 |
|
yoncl.s |
|- S = ( SetCat ` U ) |
5 |
|
yoncl.q |
|- Q = ( O FuncCat S ) |
6 |
|
yoncl.u |
|- ( ph -> U e. V ) |
7 |
|
yoncl.h |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
8 |
|
eqid |
|- ( HomF ` O ) = ( HomF ` O ) |
9 |
1 2 3 8
|
yonval |
|- ( ph -> Y = ( <. C , O >. curryF ( HomF ` O ) ) ) |
10 |
|
eqid |
|- ( <. C , O >. curryF ( HomF ` O ) ) = ( <. C , O >. curryF ( HomF ` O ) ) |
11 |
3
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
12 |
2 11
|
syl |
|- ( ph -> O e. Cat ) |
13 |
3 8 4 2 6 7
|
oppchofcl |
|- ( ph -> ( HomF ` O ) e. ( ( C Xc. O ) Func S ) ) |
14 |
10 5 2 12 13
|
curfcl |
|- ( ph -> ( <. C , O >. curryF ( HomF ` O ) ) e. ( C Func Q ) ) |
15 |
9 14
|
eqeltrd |
|- ( ph -> Y e. ( C Func Q ) ) |