Metamath Proof Explorer


Theorem yoncl

Description: The Yoneda embedding is a functor from the category to the category Q of presheaves on C . (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yonval.y
|- Y = ( Yon ` C )
yonval.c
|- ( ph -> C e. Cat )
yonval.o
|- O = ( oppCat ` C )
yoncl.s
|- S = ( SetCat ` U )
yoncl.q
|- Q = ( O FuncCat S )
yoncl.u
|- ( ph -> U e. V )
yoncl.h
|- ( ph -> ran ( Homf ` C ) C_ U )
Assertion yoncl
|- ( ph -> Y e. ( C Func Q ) )

Proof

Step Hyp Ref Expression
1 yonval.y
 |-  Y = ( Yon ` C )
2 yonval.c
 |-  ( ph -> C e. Cat )
3 yonval.o
 |-  O = ( oppCat ` C )
4 yoncl.s
 |-  S = ( SetCat ` U )
5 yoncl.q
 |-  Q = ( O FuncCat S )
6 yoncl.u
 |-  ( ph -> U e. V )
7 yoncl.h
 |-  ( ph -> ran ( Homf ` C ) C_ U )
8 eqid
 |-  ( HomF ` O ) = ( HomF ` O )
9 1 2 3 8 yonval
 |-  ( ph -> Y = ( <. C , O >. curryF ( HomF ` O ) ) )
10 eqid
 |-  ( <. C , O >. curryF ( HomF ` O ) ) = ( <. C , O >. curryF ( HomF ` O ) )
11 3 oppccat
 |-  ( C e. Cat -> O e. Cat )
12 2 11 syl
 |-  ( ph -> O e. Cat )
13 3 8 4 2 6 7 oppchofcl
 |-  ( ph -> ( HomF ` O ) e. ( ( C Xc. O ) Func S ) )
14 10 5 2 12 13 curfcl
 |-  ( ph -> ( <. C , O >. curryF ( HomF ` O ) ) e. ( C Func Q ) )
15 9 14 eqeltrd
 |-  ( ph -> Y e. ( C Func Q ) )