Metamath Proof Explorer


Theorem yon1cl

Description: The Yoneda embedding at an object of C is a presheaf on C , also known as the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yon11.y
|- Y = ( Yon ` C )
yon11.b
|- B = ( Base ` C )
yon11.c
|- ( ph -> C e. Cat )
yon11.p
|- ( ph -> X e. B )
yon1cl.o
|- O = ( oppCat ` C )
yon1cl.s
|- S = ( SetCat ` U )
yon1cl.u
|- ( ph -> U e. V )
yon1cl.h
|- ( ph -> ran ( Homf ` C ) C_ U )
Assertion yon1cl
|- ( ph -> ( ( 1st ` Y ) ` X ) e. ( O Func S ) )

Proof

Step Hyp Ref Expression
1 yon11.y
 |-  Y = ( Yon ` C )
2 yon11.b
 |-  B = ( Base ` C )
3 yon11.c
 |-  ( ph -> C e. Cat )
4 yon11.p
 |-  ( ph -> X e. B )
5 yon1cl.o
 |-  O = ( oppCat ` C )
6 yon1cl.s
 |-  S = ( SetCat ` U )
7 yon1cl.u
 |-  ( ph -> U e. V )
8 yon1cl.h
 |-  ( ph -> ran ( Homf ` C ) C_ U )
9 eqid
 |-  ( O FuncCat S ) = ( O FuncCat S )
10 9 fucbas
 |-  ( O Func S ) = ( Base ` ( O FuncCat S ) )
11 relfunc
 |-  Rel ( C Func ( O FuncCat S ) )
12 1 3 5 6 9 7 8 yoncl
 |-  ( ph -> Y e. ( C Func ( O FuncCat S ) ) )
13 1st2ndbr
 |-  ( ( Rel ( C Func ( O FuncCat S ) ) /\ Y e. ( C Func ( O FuncCat S ) ) ) -> ( 1st ` Y ) ( C Func ( O FuncCat S ) ) ( 2nd ` Y ) )
14 11 12 13 sylancr
 |-  ( ph -> ( 1st ` Y ) ( C Func ( O FuncCat S ) ) ( 2nd ` Y ) )
15 2 10 14 funcf1
 |-  ( ph -> ( 1st ` Y ) : B --> ( O Func S ) )
16 15 4 ffvelrnd
 |-  ( ph -> ( ( 1st ` Y ) ` X ) e. ( O Func S ) )