Step |
Hyp |
Ref |
Expression |
1 |
|
yon11.y |
|- Y = ( Yon ` C ) |
2 |
|
yon11.b |
|- B = ( Base ` C ) |
3 |
|
yon11.c |
|- ( ph -> C e. Cat ) |
4 |
|
yon11.p |
|- ( ph -> X e. B ) |
5 |
|
yon1cl.o |
|- O = ( oppCat ` C ) |
6 |
|
yon1cl.s |
|- S = ( SetCat ` U ) |
7 |
|
yon1cl.u |
|- ( ph -> U e. V ) |
8 |
|
yon1cl.h |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
9 |
|
eqid |
|- ( O FuncCat S ) = ( O FuncCat S ) |
10 |
9
|
fucbas |
|- ( O Func S ) = ( Base ` ( O FuncCat S ) ) |
11 |
|
relfunc |
|- Rel ( C Func ( O FuncCat S ) ) |
12 |
1 3 5 6 9 7 8
|
yoncl |
|- ( ph -> Y e. ( C Func ( O FuncCat S ) ) ) |
13 |
|
1st2ndbr |
|- ( ( Rel ( C Func ( O FuncCat S ) ) /\ Y e. ( C Func ( O FuncCat S ) ) ) -> ( 1st ` Y ) ( C Func ( O FuncCat S ) ) ( 2nd ` Y ) ) |
14 |
11 12 13
|
sylancr |
|- ( ph -> ( 1st ` Y ) ( C Func ( O FuncCat S ) ) ( 2nd ` Y ) ) |
15 |
2 10 14
|
funcf1 |
|- ( ph -> ( 1st ` Y ) : B --> ( O Func S ) ) |
16 |
15 4
|
ffvelrnd |
|- ( ph -> ( ( 1st ` Y ) ` X ) e. ( O Func S ) ) |