Step |
Hyp |
Ref |
Expression |
1 |
|
yon11.y |
|- Y = ( Yon ` C ) |
2 |
|
yon11.b |
|- B = ( Base ` C ) |
3 |
|
yon11.c |
|- ( ph -> C e. Cat ) |
4 |
|
yon11.p |
|- ( ph -> X e. B ) |
5 |
|
yon11.h |
|- H = ( Hom ` C ) |
6 |
|
yon11.z |
|- ( ph -> Z e. B ) |
7 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
8 |
|
eqid |
|- ( HomF ` ( oppCat ` C ) ) = ( HomF ` ( oppCat ` C ) ) |
9 |
1 3 7 8
|
yonval |
|- ( ph -> Y = ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) |
10 |
9
|
fveq2d |
|- ( ph -> ( 1st ` Y ) = ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ) |
11 |
10
|
fveq1d |
|- ( ph -> ( ( 1st ` Y ) ` X ) = ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) |
12 |
11
|
fveq2d |
|- ( ph -> ( 1st ` ( ( 1st ` Y ) ` X ) ) = ( 1st ` ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) ) |
13 |
12
|
fveq1d |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` Z ) = ( ( 1st ` ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) ` Z ) ) |
14 |
|
eqid |
|- ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) = ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) |
15 |
7
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
16 |
3 15
|
syl |
|- ( ph -> ( oppCat ` C ) e. Cat ) |
17 |
|
eqid |
|- ( SetCat ` ran ( Homf ` C ) ) = ( SetCat ` ran ( Homf ` C ) ) |
18 |
|
fvex |
|- ( Homf ` C ) e. _V |
19 |
18
|
rnex |
|- ran ( Homf ` C ) e. _V |
20 |
19
|
a1i |
|- ( ph -> ran ( Homf ` C ) e. _V ) |
21 |
|
ssidd |
|- ( ph -> ran ( Homf ` C ) C_ ran ( Homf ` C ) ) |
22 |
7 8 17 3 20 21
|
oppchofcl |
|- ( ph -> ( HomF ` ( oppCat ` C ) ) e. ( ( C Xc. ( oppCat ` C ) ) Func ( SetCat ` ran ( Homf ` C ) ) ) ) |
23 |
7 2
|
oppcbas |
|- B = ( Base ` ( oppCat ` C ) ) |
24 |
|
eqid |
|- ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) = ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) |
25 |
14 2 3 16 22 23 4 24 6
|
curf11 |
|- ( ph -> ( ( 1st ` ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) ` Z ) = ( X ( 1st ` ( HomF ` ( oppCat ` C ) ) ) Z ) ) |
26 |
|
eqid |
|- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
27 |
8 16 23 26 4 6
|
hof1 |
|- ( ph -> ( X ( 1st ` ( HomF ` ( oppCat ` C ) ) ) Z ) = ( X ( Hom ` ( oppCat ` C ) ) Z ) ) |
28 |
5 7
|
oppchom |
|- ( X ( Hom ` ( oppCat ` C ) ) Z ) = ( Z H X ) |
29 |
27 28
|
eqtrdi |
|- ( ph -> ( X ( 1st ` ( HomF ` ( oppCat ` C ) ) ) Z ) = ( Z H X ) ) |
30 |
13 25 29
|
3eqtrd |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` Z ) = ( Z H X ) ) |