| Step |
Hyp |
Ref |
Expression |
| 1 |
|
yon11.y |
|- Y = ( Yon ` C ) |
| 2 |
|
yon11.b |
|- B = ( Base ` C ) |
| 3 |
|
yon11.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
yon11.p |
|- ( ph -> X e. B ) |
| 5 |
|
yon11.h |
|- H = ( Hom ` C ) |
| 6 |
|
yon11.z |
|- ( ph -> Z e. B ) |
| 7 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
| 8 |
|
eqid |
|- ( HomF ` ( oppCat ` C ) ) = ( HomF ` ( oppCat ` C ) ) |
| 9 |
1 3 7 8
|
yonval |
|- ( ph -> Y = ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) |
| 10 |
9
|
fveq2d |
|- ( ph -> ( 1st ` Y ) = ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ) |
| 11 |
10
|
fveq1d |
|- ( ph -> ( ( 1st ` Y ) ` X ) = ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) |
| 12 |
11
|
fveq2d |
|- ( ph -> ( 1st ` ( ( 1st ` Y ) ` X ) ) = ( 1st ` ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) ) |
| 13 |
12
|
fveq1d |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` Z ) = ( ( 1st ` ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) ` Z ) ) |
| 14 |
|
eqid |
|- ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) = ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) |
| 15 |
7
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 16 |
3 15
|
syl |
|- ( ph -> ( oppCat ` C ) e. Cat ) |
| 17 |
|
eqid |
|- ( SetCat ` ran ( Homf ` C ) ) = ( SetCat ` ran ( Homf ` C ) ) |
| 18 |
|
fvex |
|- ( Homf ` C ) e. _V |
| 19 |
18
|
rnex |
|- ran ( Homf ` C ) e. _V |
| 20 |
19
|
a1i |
|- ( ph -> ran ( Homf ` C ) e. _V ) |
| 21 |
|
ssidd |
|- ( ph -> ran ( Homf ` C ) C_ ran ( Homf ` C ) ) |
| 22 |
7 8 17 3 20 21
|
oppchofcl |
|- ( ph -> ( HomF ` ( oppCat ` C ) ) e. ( ( C Xc. ( oppCat ` C ) ) Func ( SetCat ` ran ( Homf ` C ) ) ) ) |
| 23 |
7 2
|
oppcbas |
|- B = ( Base ` ( oppCat ` C ) ) |
| 24 |
|
eqid |
|- ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) = ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) |
| 25 |
14 2 3 16 22 23 4 24 6
|
curf11 |
|- ( ph -> ( ( 1st ` ( ( 1st ` ( <. C , ( oppCat ` C ) >. curryF ( HomF ` ( oppCat ` C ) ) ) ) ` X ) ) ` Z ) = ( X ( 1st ` ( HomF ` ( oppCat ` C ) ) ) Z ) ) |
| 26 |
|
eqid |
|- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
| 27 |
8 16 23 26 4 6
|
hof1 |
|- ( ph -> ( X ( 1st ` ( HomF ` ( oppCat ` C ) ) ) Z ) = ( X ( Hom ` ( oppCat ` C ) ) Z ) ) |
| 28 |
5 7
|
oppchom |
|- ( X ( Hom ` ( oppCat ` C ) ) Z ) = ( Z H X ) |
| 29 |
27 28
|
eqtrdi |
|- ( ph -> ( X ( 1st ` ( HomF ` ( oppCat ` C ) ) ) Z ) = ( Z H X ) ) |
| 30 |
13 25 29
|
3eqtrd |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` Z ) = ( Z H X ) ) |