Metamath Proof Explorer


Theorem yon11

Description: Value of the Yoneda embedding at an object. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yon11.y Y = Yon C
yon11.b B = Base C
yon11.c φ C Cat
yon11.p φ X B
yon11.h H = Hom C
yon11.z φ Z B
Assertion yon11 φ 1 st 1 st Y X Z = Z H X

Proof

Step Hyp Ref Expression
1 yon11.y Y = Yon C
2 yon11.b B = Base C
3 yon11.c φ C Cat
4 yon11.p φ X B
5 yon11.h H = Hom C
6 yon11.z φ Z B
7 eqid oppCat C = oppCat C
8 eqid Hom F oppCat C = Hom F oppCat C
9 1 3 7 8 yonval φ Y = C oppCat C curry F Hom F oppCat C
10 9 fveq2d φ 1 st Y = 1 st C oppCat C curry F Hom F oppCat C
11 10 fveq1d φ 1 st Y X = 1 st C oppCat C curry F Hom F oppCat C X
12 11 fveq2d φ 1 st 1 st Y X = 1 st 1 st C oppCat C curry F Hom F oppCat C X
13 12 fveq1d φ 1 st 1 st Y X Z = 1 st 1 st C oppCat C curry F Hom F oppCat C X Z
14 eqid C oppCat C curry F Hom F oppCat C = C oppCat C curry F Hom F oppCat C
15 7 oppccat C Cat oppCat C Cat
16 3 15 syl φ oppCat C Cat
17 eqid SetCat ran Hom 𝑓 C = SetCat ran Hom 𝑓 C
18 fvex Hom 𝑓 C V
19 18 rnex ran Hom 𝑓 C V
20 19 a1i φ ran Hom 𝑓 C V
21 ssidd φ ran Hom 𝑓 C ran Hom 𝑓 C
22 7 8 17 3 20 21 oppchofcl φ Hom F oppCat C C × c oppCat C Func SetCat ran Hom 𝑓 C
23 7 2 oppcbas B = Base oppCat C
24 eqid 1 st C oppCat C curry F Hom F oppCat C X = 1 st C oppCat C curry F Hom F oppCat C X
25 14 2 3 16 22 23 4 24 6 curf11 φ 1 st 1 st C oppCat C curry F Hom F oppCat C X Z = X 1 st Hom F oppCat C Z
26 eqid Hom oppCat C = Hom oppCat C
27 8 16 23 26 4 6 hof1 φ X 1 st Hom F oppCat C Z = X Hom oppCat C Z
28 5 7 oppchom X Hom oppCat C Z = Z H X
29 27 28 eqtrdi φ X 1 st Hom F oppCat C Z = Z H X
30 13 25 29 3eqtrd φ 1 st 1 st Y X Z = Z H X