Step |
Hyp |
Ref |
Expression |
1 |
|
yon11.y |
⊢ 𝑌 = ( Yon ‘ 𝐶 ) |
2 |
|
yon11.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
yon11.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
yon11.p |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
yon11.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
6 |
|
yon11.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) = ( HomF ‘ ( oppCat ‘ 𝐶 ) ) |
9 |
1 3 7 8
|
yonval |
⊢ ( 𝜑 → 𝑌 = ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) = ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ) |
11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) = ( 1st ‘ ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) ‘ 𝑍 ) = ( ( 1st ‘ ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) ) ‘ 𝑍 ) ) |
14 |
|
eqid |
⊢ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) = ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) |
15 |
7
|
oppccat |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
17 |
|
eqid |
⊢ ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) = ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) |
18 |
|
fvex |
⊢ ( Homf ‘ 𝐶 ) ∈ V |
19 |
18
|
rnex |
⊢ ran ( Homf ‘ 𝐶 ) ∈ V |
20 |
19
|
a1i |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ∈ V ) |
21 |
|
ssidd |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ ran ( Homf ‘ 𝐶 ) ) |
22 |
7 8 17 3 20 21
|
oppchofcl |
⊢ ( 𝜑 → ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ∈ ( ( 𝐶 ×c ( oppCat ‘ 𝐶 ) ) Func ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) ) ) |
23 |
7 2
|
oppcbas |
⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
24 |
|
eqid |
⊢ ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) = ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) |
25 |
14 2 3 16 22 23 4 24 6
|
curf11 |
⊢ ( 𝜑 → ( ( 1st ‘ ( ( 1st ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ‘ 𝑋 ) ) ‘ 𝑍 ) = ( 𝑋 ( 1st ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 𝑍 ) ) |
26 |
|
eqid |
⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) |
27 |
8 16 23 26 4 6
|
hof1 |
⊢ ( 𝜑 → ( 𝑋 ( 1st ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 𝑍 ) = ( 𝑋 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑍 ) ) |
28 |
5 7
|
oppchom |
⊢ ( 𝑋 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑍 ) = ( 𝑍 𝐻 𝑋 ) |
29 |
27 28
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑋 ( 1st ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 𝑍 ) = ( 𝑍 𝐻 𝑋 ) ) |
30 |
13 25 29
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) ‘ 𝑍 ) = ( 𝑍 𝐻 𝑋 ) ) |