Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
2 |
|
oppcbas.2 |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
4 |
|
slotsbhcdif |
⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |
5 |
4
|
simp1i |
⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
6 |
3 5
|
setsnid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) ) |
7 |
4
|
simp2i |
⊢ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) |
8 |
3 7
|
setsnid |
⊢ ( Base ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) ) = ( Base ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
9 |
6 8
|
eqtri |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
13 |
10 11 12 1
|
oppcval |
⊢ ( 𝐶 ∈ V → 𝑂 = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝐶 ∈ V → ( Base ‘ 𝑂 ) = ( Base ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) ) |
15 |
9 14
|
eqtr4id |
⊢ ( 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
16 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
17 |
16
|
eqcomi |
⊢ ( Base ‘ ∅ ) = ∅ |
18 |
17 1
|
fveqprc |
⊢ ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
19 |
15 18
|
pm2.61i |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
20 |
2 19
|
eqtri |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |