Metamath Proof Explorer


Theorem slotsbhcdif

Description: The slots Base , Hom and comp are different. (Contributed by AV, 5-Mar-2020) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Assertion slotsbhcdif ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) )

Proof

Step Hyp Ref Expression
1 basendx ( Base ‘ ndx ) = 1
2 1re 1 ∈ ℝ
3 1nn 1 ∈ ℕ
4 4nn0 4 ∈ ℕ0
5 1nn0 1 ∈ ℕ0
6 1lt10 1 < 1 0
7 3 4 5 6 declti 1 < 1 4
8 2 7 ltneii 1 ≠ 1 4
9 homndx ( Hom ‘ ndx ) = 1 4
10 8 9 neeqtrri 1 ≠ ( Hom ‘ ndx )
11 1 10 eqnetri ( Base ‘ ndx ) ≠ ( Hom ‘ ndx )
12 5nn0 5 ∈ ℕ0
13 3 12 5 6 declti 1 < 1 5
14 2 13 ltneii 1 ≠ 1 5
15 ccondx ( comp ‘ ndx ) = 1 5
16 14 15 neeqtrri 1 ≠ ( comp ‘ ndx )
17 1 16 eqnetri ( Base ‘ ndx ) ≠ ( comp ‘ ndx )
18 5 4 deccl 1 4 ∈ ℕ0
19 18 nn0rei 1 4 ∈ ℝ
20 5nn 5 ∈ ℕ
21 4lt5 4 < 5
22 5 4 20 21 declt 1 4 < 1 5
23 19 22 ltneii 1 4 ≠ 1 5
24 23 15 neeqtrri 1 4 ≠ ( comp ‘ ndx )
25 9 24 eqnetri ( Hom ‘ ndx ) ≠ ( comp ‘ ndx )
26 11 17 25 3pm3.2i ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) )