Description: The slots Base , Hom and comp are different. (Contributed by AV, 5-Mar-2020) (Proof shortened by AV, 28-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | slotsbhcdif | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basendx | ⊢ ( Base ‘ ndx ) = 1 | |
2 | 1re | ⊢ 1 ∈ ℝ | |
3 | 1nn | ⊢ 1 ∈ ℕ | |
4 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
5 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 | ⊢ 1 < ; 1 0 | |
7 | 3 4 5 6 | declti | ⊢ 1 < ; 1 4 |
8 | 2 7 | ltneii | ⊢ 1 ≠ ; 1 4 |
9 | homndx | ⊢ ( Hom ‘ ndx ) = ; 1 4 | |
10 | 8 9 | neeqtrri | ⊢ 1 ≠ ( Hom ‘ ndx ) |
11 | 1 10 | eqnetri | ⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
12 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
13 | 3 12 5 6 | declti | ⊢ 1 < ; 1 5 |
14 | 2 13 | ltneii | ⊢ 1 ≠ ; 1 5 |
15 | ccondx | ⊢ ( comp ‘ ndx ) = ; 1 5 | |
16 | 14 15 | neeqtrri | ⊢ 1 ≠ ( comp ‘ ndx ) |
17 | 1 16 | eqnetri | ⊢ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) |
18 | 5 4 | deccl | ⊢ ; 1 4 ∈ ℕ0 |
19 | 18 | nn0rei | ⊢ ; 1 4 ∈ ℝ |
20 | 5nn | ⊢ 5 ∈ ℕ | |
21 | 4lt5 | ⊢ 4 < 5 | |
22 | 5 4 20 21 | declt | ⊢ ; 1 4 < ; 1 5 |
23 | 19 22 | ltneii | ⊢ ; 1 4 ≠ ; 1 5 |
24 | 23 15 | neeqtrri | ⊢ ; 1 4 ≠ ( comp ‘ ndx ) |
25 | 9 24 | eqnetri | ⊢ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) |
26 | 11 17 25 | 3pm3.2i | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |