Metamath Proof Explorer


Theorem slotsbhcdif

Description: The slots Base , Hom and comp are different. (Contributed by AV, 5-Mar-2020) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Assertion slotsbhcdif
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) )

Proof

Step Hyp Ref Expression
1 basendx
 |-  ( Base ` ndx ) = 1
2 1re
 |-  1 e. RR
3 1nn
 |-  1 e. NN
4 4nn0
 |-  4 e. NN0
5 1nn0
 |-  1 e. NN0
6 1lt10
 |-  1 < ; 1 0
7 3 4 5 6 declti
 |-  1 < ; 1 4
8 2 7 ltneii
 |-  1 =/= ; 1 4
9 homndx
 |-  ( Hom ` ndx ) = ; 1 4
10 8 9 neeqtrri
 |-  1 =/= ( Hom ` ndx )
11 1 10 eqnetri
 |-  ( Base ` ndx ) =/= ( Hom ` ndx )
12 5nn0
 |-  5 e. NN0
13 3 12 5 6 declti
 |-  1 < ; 1 5
14 2 13 ltneii
 |-  1 =/= ; 1 5
15 ccondx
 |-  ( comp ` ndx ) = ; 1 5
16 14 15 neeqtrri
 |-  1 =/= ( comp ` ndx )
17 1 16 eqnetri
 |-  ( Base ` ndx ) =/= ( comp ` ndx )
18 5 4 deccl
 |-  ; 1 4 e. NN0
19 18 nn0rei
 |-  ; 1 4 e. RR
20 5nn
 |-  5 e. NN
21 4lt5
 |-  4 < 5
22 5 4 20 21 declt
 |-  ; 1 4 < ; 1 5
23 19 22 ltneii
 |-  ; 1 4 =/= ; 1 5
24 23 15 neeqtrri
 |-  ; 1 4 =/= ( comp ` ndx )
25 9 24 eqnetri
 |-  ( Hom ` ndx ) =/= ( comp ` ndx )
26 11 17 25 3pm3.2i
 |-  ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) )