Metamath Proof Explorer


Theorem slotsbhcdif

Description: The slots Base , Hom and comp are different. (Contributed by AV, 5-Mar-2020) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Assertion slotsbhcdif Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx

Proof

Step Hyp Ref Expression
1 basendx Base ndx = 1
2 1re 1
3 1nn 1
4 4nn0 4 0
5 1nn0 1 0
6 1lt10 1 < 10
7 3 4 5 6 declti 1 < 14
8 2 7 ltneii 1 14
9 homndx Hom ndx = 14
10 8 9 neeqtrri 1 Hom ndx
11 1 10 eqnetri Base ndx Hom ndx
12 5nn0 5 0
13 3 12 5 6 declti 1 < 15
14 2 13 ltneii 1 15
15 ccondx comp ndx = 15
16 14 15 neeqtrri 1 comp ndx
17 1 16 eqnetri Base ndx comp ndx
18 5 4 deccl 14 0
19 18 nn0rei 14
20 5nn 5
21 4lt5 4 < 5
22 5 4 20 21 declt 14 < 15
23 19 22 ltneii 14 15
24 23 15 neeqtrri 14 comp ndx
25 9 24 eqnetri Hom ndx comp ndx
26 11 17 25 3pm3.2i Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx