Description: Obsolete proof of slotsbhcdif as of 28-Oct-2024. The slots Base , Hom and comp are different. (Contributed by AV, 5-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | slotsbhcdifOLD | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base | ⊢ Base = Slot 1 | |
2 | 1nn | ⊢ 1 ∈ ℕ | |
3 | 1 2 | ndxarg | ⊢ ( Base ‘ ndx ) = 1 |
4 | 1re | ⊢ 1 ∈ ℝ | |
5 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
6 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 | ⊢ 1 < ; 1 0 | |
8 | 2 5 6 7 | declti | ⊢ 1 < ; 1 4 |
9 | 4 8 | ltneii | ⊢ 1 ≠ ; 1 4 |
10 | homndx | ⊢ ( Hom ‘ ndx ) = ; 1 4 | |
11 | 9 10 | neeqtrri | ⊢ 1 ≠ ( Hom ‘ ndx ) |
12 | 3 11 | eqnetri | ⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
13 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
14 | 2 13 6 7 | declti | ⊢ 1 < ; 1 5 |
15 | 4 14 | ltneii | ⊢ 1 ≠ ; 1 5 |
16 | ccondx | ⊢ ( comp ‘ ndx ) = ; 1 5 | |
17 | 15 16 | neeqtrri | ⊢ 1 ≠ ( comp ‘ ndx ) |
18 | 3 17 | eqnetri | ⊢ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) |
19 | 6 5 | deccl | ⊢ ; 1 4 ∈ ℕ0 |
20 | 19 | nn0rei | ⊢ ; 1 4 ∈ ℝ |
21 | 5nn | ⊢ 5 ∈ ℕ | |
22 | 4lt5 | ⊢ 4 < 5 | |
23 | 6 5 21 22 | declt | ⊢ ; 1 4 < ; 1 5 |
24 | 20 23 | ltneii | ⊢ ; 1 4 ≠ ; 1 5 |
25 | 24 16 | neeqtrri | ⊢ ; 1 4 ≠ ( comp ‘ ndx ) |
26 | 10 25 | eqnetri | ⊢ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) |
27 | 12 18 26 | 3pm3.2i | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |