| Step |
Hyp |
Ref |
Expression |
| 1 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
| 2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 4 |
|
5nn |
⊢ 5 ∈ ℕ |
| 5 |
|
5pos |
⊢ 0 < 5 |
| 6 |
2 3 4 5
|
declt |
⊢ ; 1 0 < ; 1 5 |
| 7 |
1 6
|
ltneii |
⊢ ; 1 0 ≠ ; 1 5 |
| 8 |
|
plendx |
⊢ ( le ‘ ndx ) = ; 1 0 |
| 9 |
|
ccondx |
⊢ ( comp ‘ ndx ) = ; 1 5 |
| 10 |
8 9
|
neeq12i |
⊢ ( ( le ‘ ndx ) ≠ ( comp ‘ ndx ) ↔ ; 1 0 ≠ ; 1 5 ) |
| 11 |
7 10
|
mpbir |
⊢ ( le ‘ ndx ) ≠ ( comp ‘ ndx ) |
| 12 |
|
4nn |
⊢ 4 ∈ ℕ |
| 13 |
|
4pos |
⊢ 0 < 4 |
| 14 |
2 3 12 13
|
declt |
⊢ ; 1 0 < ; 1 4 |
| 15 |
1 14
|
ltneii |
⊢ ; 1 0 ≠ ; 1 4 |
| 16 |
|
homndx |
⊢ ( Hom ‘ ndx ) = ; 1 4 |
| 17 |
8 16
|
neeq12i |
⊢ ( ( le ‘ ndx ) ≠ ( Hom ‘ ndx ) ↔ ; 1 0 ≠ ; 1 4 ) |
| 18 |
15 17
|
mpbir |
⊢ ( le ‘ ndx ) ≠ ( Hom ‘ ndx ) |
| 19 |
11 18
|
pm3.2i |
⊢ ( ( le ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( le ‘ ndx ) ≠ ( Hom ‘ ndx ) ) |