Metamath Proof Explorer


Theorem prstcleval

Description: Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
prstcnid.k ( 𝜑𝐾 ∈ Proset )
prstcle.l ( 𝜑 = ( le ‘ 𝐾 ) )
Assertion prstcleval ( 𝜑 = ( le ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 prstcnid.k ( 𝜑𝐾 ∈ Proset )
3 prstcle.l ( 𝜑 = ( le ‘ 𝐾 ) )
4 pleid le = Slot ( le ‘ ndx )
5 10re 1 0 ∈ ℝ
6 1nn0 1 ∈ ℕ0
7 0nn0 0 ∈ ℕ0
8 5nn 5 ∈ ℕ
9 8 nngt0i 0 < 5
10 6 7 8 9 declt 1 0 < 1 5
11 5 10 ltneii 1 0 ≠ 1 5
12 plendx ( le ‘ ndx ) = 1 0
13 ccondx ( comp ‘ ndx ) = 1 5
14 12 13 neeq12i ( ( le ‘ ndx ) ≠ ( comp ‘ ndx ) ↔ 1 0 ≠ 1 5 )
15 11 14 mpbir ( le ‘ ndx ) ≠ ( comp ‘ ndx )
16 4nn 4 ∈ ℕ
17 16 nngt0i 0 < 4
18 6 7 16 17 declt 1 0 < 1 4
19 5 18 ltneii 1 0 ≠ 1 4
20 homndx ( Hom ‘ ndx ) = 1 4
21 12 20 neeq12i ( ( le ‘ ndx ) ≠ ( Hom ‘ ndx ) ↔ 1 0 ≠ 1 4 )
22 19 21 mpbir ( le ‘ ndx ) ≠ ( Hom ‘ ndx )
23 1 2 4 15 22 prstcnid ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐶 ) )
24 3 23 eqtrd ( 𝜑 = ( le ‘ 𝐶 ) )