Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
2 |
|
prstcnid.k |
⊢ ( 𝜑 → 𝐾 ∈ Proset ) |
3 |
|
prstcle.l |
⊢ ( 𝜑 → ≤ = ( le ‘ 𝐾 ) ) |
4 |
|
pleid |
⊢ le = Slot ( le ‘ ndx ) |
5 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
6 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
7 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
8 |
|
5nn |
⊢ 5 ∈ ℕ |
9 |
8
|
nngt0i |
⊢ 0 < 5 |
10 |
6 7 8 9
|
declt |
⊢ ; 1 0 < ; 1 5 |
11 |
5 10
|
ltneii |
⊢ ; 1 0 ≠ ; 1 5 |
12 |
|
plendx |
⊢ ( le ‘ ndx ) = ; 1 0 |
13 |
|
ccondx |
⊢ ( comp ‘ ndx ) = ; 1 5 |
14 |
12 13
|
neeq12i |
⊢ ( ( le ‘ ndx ) ≠ ( comp ‘ ndx ) ↔ ; 1 0 ≠ ; 1 5 ) |
15 |
11 14
|
mpbir |
⊢ ( le ‘ ndx ) ≠ ( comp ‘ ndx ) |
16 |
|
4nn |
⊢ 4 ∈ ℕ |
17 |
16
|
nngt0i |
⊢ 0 < 4 |
18 |
6 7 16 17
|
declt |
⊢ ; 1 0 < ; 1 4 |
19 |
5 18
|
ltneii |
⊢ ; 1 0 ≠ ; 1 4 |
20 |
|
homndx |
⊢ ( Hom ‘ ndx ) = ; 1 4 |
21 |
12 20
|
neeq12i |
⊢ ( ( le ‘ ndx ) ≠ ( Hom ‘ ndx ) ↔ ; 1 0 ≠ ; 1 4 ) |
22 |
19 21
|
mpbir |
⊢ ( le ‘ ndx ) ≠ ( Hom ‘ ndx ) |
23 |
1 2 4 15 22
|
prstcnid |
⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐶 ) ) |
24 |
3 23
|
eqtrd |
⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) |