Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
|- ( ph -> C = ( ProsetToCat ` K ) ) |
2 |
|
prstcnid.k |
|- ( ph -> K e. Proset ) |
3 |
|
prstcle.l |
|- ( ph -> .<_ = ( le ` K ) ) |
4 |
|
pleid |
|- le = Slot ( le ` ndx ) |
5 |
|
10re |
|- ; 1 0 e. RR |
6 |
|
1nn0 |
|- 1 e. NN0 |
7 |
|
0nn0 |
|- 0 e. NN0 |
8 |
|
5nn |
|- 5 e. NN |
9 |
8
|
nngt0i |
|- 0 < 5 |
10 |
6 7 8 9
|
declt |
|- ; 1 0 < ; 1 5 |
11 |
5 10
|
ltneii |
|- ; 1 0 =/= ; 1 5 |
12 |
|
plendx |
|- ( le ` ndx ) = ; 1 0 |
13 |
|
ccondx |
|- ( comp ` ndx ) = ; 1 5 |
14 |
12 13
|
neeq12i |
|- ( ( le ` ndx ) =/= ( comp ` ndx ) <-> ; 1 0 =/= ; 1 5 ) |
15 |
11 14
|
mpbir |
|- ( le ` ndx ) =/= ( comp ` ndx ) |
16 |
|
4nn |
|- 4 e. NN |
17 |
16
|
nngt0i |
|- 0 < 4 |
18 |
6 7 16 17
|
declt |
|- ; 1 0 < ; 1 4 |
19 |
5 18
|
ltneii |
|- ; 1 0 =/= ; 1 4 |
20 |
|
homndx |
|- ( Hom ` ndx ) = ; 1 4 |
21 |
12 20
|
neeq12i |
|- ( ( le ` ndx ) =/= ( Hom ` ndx ) <-> ; 1 0 =/= ; 1 4 ) |
22 |
19 21
|
mpbir |
|- ( le ` ndx ) =/= ( Hom ` ndx ) |
23 |
1 2 4 15 22
|
prstcnid |
|- ( ph -> ( le ` K ) = ( le ` C ) ) |
24 |
3 23
|
eqtrd |
|- ( ph -> .<_ = ( le ` C ) ) |