Metamath Proof Explorer


Theorem prstcle

Description: Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c
|- ( ph -> C = ( ProsetToCat ` K ) )
prstcnid.k
|- ( ph -> K e. Proset )
prstcle.l
|- ( ph -> .<_ = ( le ` K ) )
Assertion prstcle
|- ( ph -> ( X .<_ Y <-> X ( le ` C ) Y ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c
 |-  ( ph -> C = ( ProsetToCat ` K ) )
2 prstcnid.k
 |-  ( ph -> K e. Proset )
3 prstcle.l
 |-  ( ph -> .<_ = ( le ` K ) )
4 1 2 3 prstcleval
 |-  ( ph -> .<_ = ( le ` C ) )
5 4 breqd
 |-  ( ph -> ( X .<_ Y <-> X ( le ` C ) Y ) )