Metamath Proof Explorer


Theorem prstcocval

Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c
|- ( ph -> C = ( ProsetToCat ` K ) )
prstcnid.k
|- ( ph -> K e. Proset )
prstcoc.oc
|- ( ph -> ._|_ = ( oc ` K ) )
Assertion prstcocval
|- ( ph -> ._|_ = ( oc ` C ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c
 |-  ( ph -> C = ( ProsetToCat ` K ) )
2 prstcnid.k
 |-  ( ph -> K e. Proset )
3 prstcoc.oc
 |-  ( ph -> ._|_ = ( oc ` K ) )
4 ocid
 |-  oc = Slot ( oc ` ndx )
5 1nn0
 |-  1 e. NN0
6 5 5 deccl
 |-  ; 1 1 e. NN0
7 6 nn0rei
 |-  ; 1 1 e. RR
8 5nn
 |-  5 e. NN
9 1lt5
 |-  1 < 5
10 5 5 8 9 declt
 |-  ; 1 1 < ; 1 5
11 7 10 ltneii
 |-  ; 1 1 =/= ; 1 5
12 ocndx
 |-  ( oc ` ndx ) = ; 1 1
13 ccondx
 |-  ( comp ` ndx ) = ; 1 5
14 12 13 neeq12i
 |-  ( ( oc ` ndx ) =/= ( comp ` ndx ) <-> ; 1 1 =/= ; 1 5 )
15 11 14 mpbir
 |-  ( oc ` ndx ) =/= ( comp ` ndx )
16 4nn
 |-  4 e. NN
17 1lt4
 |-  1 < 4
18 5 5 16 17 declt
 |-  ; 1 1 < ; 1 4
19 7 18 ltneii
 |-  ; 1 1 =/= ; 1 4
20 homndx
 |-  ( Hom ` ndx ) = ; 1 4
21 12 20 neeq12i
 |-  ( ( oc ` ndx ) =/= ( Hom ` ndx ) <-> ; 1 1 =/= ; 1 4 )
22 19 21 mpbir
 |-  ( oc ` ndx ) =/= ( Hom ` ndx )
23 1 2 4 15 22 prstcnid
 |-  ( ph -> ( oc ` K ) = ( oc ` C ) )
24 3 23 eqtrd
 |-  ( ph -> ._|_ = ( oc ` C ) )