Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024) (Proof shortened by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| prstcnid.k | |- ( ph -> K e. Proset ) |
||
| prstcoc.oc | |- ( ph -> ._|_ = ( oc ` K ) ) |
||
| Assertion | prstcocval | |- ( ph -> ._|_ = ( oc ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | prstcnid.k | |- ( ph -> K e. Proset ) |
|
| 3 | prstcoc.oc | |- ( ph -> ._|_ = ( oc ` K ) ) |
|
| 4 | ocid | |- oc = Slot ( oc ` ndx ) |
|
| 5 | slotsdifocndx | |- ( ( oc ` ndx ) =/= ( comp ` ndx ) /\ ( oc ` ndx ) =/= ( Hom ` ndx ) ) |
|
| 6 | 5 | simpli | |- ( oc ` ndx ) =/= ( comp ` ndx ) |
| 7 | 5 | simpri | |- ( oc ` ndx ) =/= ( Hom ` ndx ) |
| 8 | 1 2 4 6 7 | prstcnid | |- ( ph -> ( oc ` K ) = ( oc ` C ) ) |
| 9 | 3 8 | eqtrd | |- ( ph -> ._|_ = ( oc ` C ) ) |