| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prstcnid.c |
|- ( ph -> C = ( ProsetToCat ` K ) ) |
| 2 |
|
prstcnid.k |
|- ( ph -> K e. Proset ) |
| 3 |
|
prstcoc.oc |
|- ( ph -> ._|_ = ( oc ` K ) ) |
| 4 |
|
ocid |
|- oc = Slot ( oc ` ndx ) |
| 5 |
|
1nn0 |
|- 1 e. NN0 |
| 6 |
5 5
|
deccl |
|- ; 1 1 e. NN0 |
| 7 |
6
|
nn0rei |
|- ; 1 1 e. RR |
| 8 |
|
5nn |
|- 5 e. NN |
| 9 |
|
1lt5 |
|- 1 < 5 |
| 10 |
5 5 8 9
|
declt |
|- ; 1 1 < ; 1 5 |
| 11 |
7 10
|
ltneii |
|- ; 1 1 =/= ; 1 5 |
| 12 |
|
ocndx |
|- ( oc ` ndx ) = ; 1 1 |
| 13 |
|
ccondx |
|- ( comp ` ndx ) = ; 1 5 |
| 14 |
12 13
|
neeq12i |
|- ( ( oc ` ndx ) =/= ( comp ` ndx ) <-> ; 1 1 =/= ; 1 5 ) |
| 15 |
11 14
|
mpbir |
|- ( oc ` ndx ) =/= ( comp ` ndx ) |
| 16 |
|
4nn |
|- 4 e. NN |
| 17 |
|
1lt4 |
|- 1 < 4 |
| 18 |
5 5 16 17
|
declt |
|- ; 1 1 < ; 1 4 |
| 19 |
7 18
|
ltneii |
|- ; 1 1 =/= ; 1 4 |
| 20 |
|
homndx |
|- ( Hom ` ndx ) = ; 1 4 |
| 21 |
12 20
|
neeq12i |
|- ( ( oc ` ndx ) =/= ( Hom ` ndx ) <-> ; 1 1 =/= ; 1 4 ) |
| 22 |
19 21
|
mpbir |
|- ( oc ` ndx ) =/= ( Hom ` ndx ) |
| 23 |
1 2 4 15 22
|
prstcnid |
|- ( ph -> ( oc ` K ) = ( oc ` C ) ) |
| 24 |
3 23
|
eqtrd |
|- ( ph -> ._|_ = ( oc ` C ) ) |