Metamath Proof Explorer


Theorem prstcocvalOLD

Description: Obsolete proof of prstcocval as of 12-Nov-2024. Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φKProset
prstcoc.oc φ˙=ocK
Assertion prstcocvalOLD φ˙=ocC

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φKProset
3 prstcoc.oc φ˙=ocK
4 ocid oc=Slotocndx
5 1nn0 10
6 5 5 deccl 110
7 6 nn0rei 11
8 5nn 5
9 1lt5 1<5
10 5 5 8 9 declt 11<15
11 7 10 ltneii 1115
12 ocndx ocndx=11
13 ccondx compndx=15
14 12 13 neeq12i ocndxcompndx1115
15 11 14 mpbir ocndxcompndx
16 4nn 4
17 1lt4 1<4
18 5 5 16 17 declt 11<14
19 7 18 ltneii 1114
20 homndx Homndx=14
21 12 20 neeq12i ocndxHomndx1114
22 19 21 mpbir ocndxHomndx
23 1 2 4 15 22 prstcnid φocK=ocC
24 3 23 eqtrd φ˙=ocC