Metamath Proof Explorer


Theorem prstcocval

Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φ K Proset
prstcoc.oc φ ˙ = oc K
Assertion prstcocval φ ˙ = oc C

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φ K Proset
3 prstcoc.oc φ ˙ = oc K
4 ocid oc = Slot oc ndx
5 1nn0 1 0
6 5 5 deccl 11 0
7 6 nn0rei 11
8 5nn 5
9 1lt5 1 < 5
10 5 5 8 9 declt 11 < 15
11 7 10 ltneii 11 15
12 ocndx oc ndx = 11
13 ccondx comp ndx = 15
14 12 13 neeq12i oc ndx comp ndx 11 15
15 11 14 mpbir oc ndx comp ndx
16 4nn 4
17 1lt4 1 < 4
18 5 5 16 17 declt 11 < 14
19 7 18 ltneii 11 14
20 homndx Hom ndx = 14
21 12 20 neeq12i oc ndx Hom ndx 11 14
22 19 21 mpbir oc ndx Hom ndx
23 1 2 4 15 22 prstcnid φ oc K = oc C
24 3 23 eqtrd φ ˙ = oc C