Metamath Proof Explorer


Theorem slotsdifocndx

Description: The index of the slot for the orthocomplementation is not the index of other slots. Formerly part of proof for prstcocval . (Contributed by AV, 12-Nov-2024)

Ref Expression
Assertion slotsdifocndx oc ndx comp ndx oc ndx Hom ndx

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 1nn 1
3 1 2 decnncl 11
4 3 nnrei 11
5 5nn 5
6 1lt5 1 < 5
7 1 1 5 6 declt 11 < 15
8 4 7 ltneii 11 15
9 ocndx oc ndx = 11
10 ccondx comp ndx = 15
11 9 10 neeq12i oc ndx comp ndx 11 15
12 8 11 mpbir oc ndx comp ndx
13 4nn 4
14 1lt4 1 < 4
15 1 1 13 14 declt 11 < 14
16 4 15 ltneii 11 14
17 homndx Hom ndx = 14
18 9 17 neeq12i oc ndx Hom ndx 11 14
19 16 18 mpbir oc ndx Hom ndx
20 12 19 pm3.2i oc ndx comp ndx oc ndx Hom ndx