Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
2 |
|
1nn |
⊢ 1 ∈ ℕ |
3 |
1 2
|
decnncl |
⊢ ; 1 1 ∈ ℕ |
4 |
3
|
nnrei |
⊢ ; 1 1 ∈ ℝ |
5 |
|
5nn |
⊢ 5 ∈ ℕ |
6 |
|
1lt5 |
⊢ 1 < 5 |
7 |
1 1 5 6
|
declt |
⊢ ; 1 1 < ; 1 5 |
8 |
4 7
|
ltneii |
⊢ ; 1 1 ≠ ; 1 5 |
9 |
|
ocndx |
⊢ ( oc ‘ ndx ) = ; 1 1 |
10 |
|
ccondx |
⊢ ( comp ‘ ndx ) = ; 1 5 |
11 |
9 10
|
neeq12i |
⊢ ( ( oc ‘ ndx ) ≠ ( comp ‘ ndx ) ↔ ; 1 1 ≠ ; 1 5 ) |
12 |
8 11
|
mpbir |
⊢ ( oc ‘ ndx ) ≠ ( comp ‘ ndx ) |
13 |
|
4nn |
⊢ 4 ∈ ℕ |
14 |
|
1lt4 |
⊢ 1 < 4 |
15 |
1 1 13 14
|
declt |
⊢ ; 1 1 < ; 1 4 |
16 |
4 15
|
ltneii |
⊢ ; 1 1 ≠ ; 1 4 |
17 |
|
homndx |
⊢ ( Hom ‘ ndx ) = ; 1 4 |
18 |
9 17
|
neeq12i |
⊢ ( ( oc ‘ ndx ) ≠ ( Hom ‘ ndx ) ↔ ; 1 1 ≠ ; 1 4 ) |
19 |
16 18
|
mpbir |
⊢ ( oc ‘ ndx ) ≠ ( Hom ‘ ndx ) |
20 |
12 19
|
pm3.2i |
⊢ ( ( oc ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( oc ‘ ndx ) ≠ ( Hom ‘ ndx ) ) |