Metamath Proof Explorer


Theorem prstcocval

Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
prstcnid.k ( 𝜑𝐾 ∈ Proset )
prstcoc.oc ( 𝜑 = ( oc ‘ 𝐾 ) )
Assertion prstcocval ( 𝜑 = ( oc ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 prstcnid.k ( 𝜑𝐾 ∈ Proset )
3 prstcoc.oc ( 𝜑 = ( oc ‘ 𝐾 ) )
4 ocid oc = Slot ( oc ‘ ndx )
5 slotsdifocndx ( ( oc ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( oc ‘ ndx ) ≠ ( Hom ‘ ndx ) )
6 5 simpli ( oc ‘ ndx ) ≠ ( comp ‘ ndx )
7 5 simpri ( oc ‘ ndx ) ≠ ( Hom ‘ ndx )
8 1 2 4 6 7 prstcnid ( 𝜑 → ( oc ‘ 𝐾 ) = ( oc ‘ 𝐶 ) )
9 3 8 eqtrd ( 𝜑 = ( oc ‘ 𝐶 ) )