Metamath Proof Explorer


Theorem prstcocval

Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
prstcnid.k ( 𝜑𝐾 ∈ Proset )
prstcoc.oc ( 𝜑 = ( oc ‘ 𝐾 ) )
Assertion prstcocval ( 𝜑 = ( oc ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 prstcnid.k ( 𝜑𝐾 ∈ Proset )
3 prstcoc.oc ( 𝜑 = ( oc ‘ 𝐾 ) )
4 ocid oc = Slot ( oc ‘ ndx )
5 1nn0 1 ∈ ℕ0
6 5 5 deccl 1 1 ∈ ℕ0
7 6 nn0rei 1 1 ∈ ℝ
8 5nn 5 ∈ ℕ
9 1lt5 1 < 5
10 5 5 8 9 declt 1 1 < 1 5
11 7 10 ltneii 1 1 ≠ 1 5
12 ocndx ( oc ‘ ndx ) = 1 1
13 ccondx ( comp ‘ ndx ) = 1 5
14 12 13 neeq12i ( ( oc ‘ ndx ) ≠ ( comp ‘ ndx ) ↔ 1 1 ≠ 1 5 )
15 11 14 mpbir ( oc ‘ ndx ) ≠ ( comp ‘ ndx )
16 4nn 4 ∈ ℕ
17 1lt4 1 < 4
18 5 5 16 17 declt 1 1 < 1 4
19 7 18 ltneii 1 1 ≠ 1 4
20 homndx ( Hom ‘ ndx ) = 1 4
21 12 20 neeq12i ( ( oc ‘ ndx ) ≠ ( Hom ‘ ndx ) ↔ 1 1 ≠ 1 4 )
22 19 21 mpbir ( oc ‘ ndx ) ≠ ( Hom ‘ ndx )
23 1 2 4 15 22 prstcnid ( 𝜑 → ( oc ‘ 𝐾 ) = ( oc ‘ 𝐶 ) )
24 3 23 eqtrd ( 𝜑 = ( oc ‘ 𝐶 ) )