Metamath Proof Explorer


Theorem prstcnid

Description: Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
prstcnid.k ( 𝜑𝐾 ∈ Proset )
prstcnid.e 𝐸 = Slot ( 𝐸 ‘ ndx )
prstcnid.no ( 𝐸 ‘ ndx ) ≠ ( comp ‘ ndx )
prstcnid.nh ( 𝐸 ‘ ndx ) ≠ ( Hom ‘ ndx )
Assertion prstcnid ( 𝜑 → ( 𝐸𝐾 ) = ( 𝐸𝐶 ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 prstcnid.k ( 𝜑𝐾 ∈ Proset )
3 prstcnid.e 𝐸 = Slot ( 𝐸 ‘ ndx )
4 prstcnid.no ( 𝐸 ‘ ndx ) ≠ ( comp ‘ ndx )
5 prstcnid.nh ( 𝐸 ‘ ndx ) ≠ ( Hom ‘ ndx )
6 3 5 setsnid ( 𝐸𝐾 ) = ( 𝐸 ‘ ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) )
7 1 2 3 4 prstcnidlem ( 𝜑 → ( 𝐸𝐶 ) = ( 𝐸 ‘ ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) ) )
8 6 7 eqtr4id ( 𝜑 → ( 𝐸𝐾 ) = ( 𝐸𝐶 ) )