Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
2 |
|
prstcnid.k |
⊢ ( 𝜑 → 𝐾 ∈ Proset ) |
3 |
|
prstcnid.e |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
4 |
|
prstcnid.no |
⊢ ( 𝐸 ‘ ndx ) ≠ ( comp ‘ ndx ) |
5 |
1 2
|
prstcval |
⊢ ( 𝜑 → 𝐶 = ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐶 ) = ( 𝐸 ‘ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) ) |
7 |
3 4
|
setsnid |
⊢ ( 𝐸 ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) = ( 𝐸 ‘ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
8 |
6 7
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐶 ) = ( 𝐸 ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) ) |