Metamath Proof Explorer


Theorem prstcnidlem

Description: Lemma for prstcnid and prstchomval . (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
prstcnid.k ( 𝜑𝐾 ∈ Proset )
prstcnid.e 𝐸 = Slot ( 𝐸 ‘ ndx )
prstcnid.no ( 𝐸 ‘ ndx ) ≠ ( comp ‘ ndx )
Assertion prstcnidlem ( 𝜑 → ( 𝐸𝐶 ) = ( 𝐸 ‘ ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 prstcnid.k ( 𝜑𝐾 ∈ Proset )
3 prstcnid.e 𝐸 = Slot ( 𝐸 ‘ ndx )
4 prstcnid.no ( 𝐸 ‘ ndx ) ≠ ( comp ‘ ndx )
5 1 2 prstcval ( 𝜑𝐶 = ( ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ∅ ⟩ ) )
6 5 fveq2d ( 𝜑 → ( 𝐸𝐶 ) = ( 𝐸 ‘ ( ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ∅ ⟩ ) ) )
7 3 4 setsnid ( 𝐸 ‘ ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) ) = ( 𝐸 ‘ ( ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ∅ ⟩ ) )
8 6 7 eqtr4di ( 𝜑 → ( 𝐸𝐶 ) = ( 𝐸 ‘ ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) ) )