Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
2 |
|
prstcnid.k |
⊢ ( 𝜑 → 𝐾 ∈ Proset ) |
3 |
|
prstchomval.l |
⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) |
4 |
|
homid |
⊢ Hom = Slot ( Hom ‘ ndx ) |
5 |
|
slotsbhcdif |
⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) |
6 |
5
|
simp3i |
⊢ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) |
7 |
1 2 4 6
|
prstcnidlem |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) ) |
8 |
|
fvex |
⊢ ( le ‘ 𝐾 ) ∈ V |
9 |
|
snex |
⊢ { 1o } ∈ V |
10 |
8 9
|
xpex |
⊢ ( ( le ‘ 𝐾 ) × { 1o } ) ∈ V |
11 |
4
|
setsid |
⊢ ( ( 𝐾 ∈ Proset ∧ ( ( le ‘ 𝐾 ) × { 1o } ) ∈ V ) → ( ( le ‘ 𝐾 ) × { 1o } ) = ( Hom ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) ) |
12 |
2 10 11
|
sylancl |
⊢ ( 𝜑 → ( ( le ‘ 𝐾 ) × { 1o } ) = ( Hom ‘ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ) ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) ) |
14 |
1 2 13
|
prstcleval |
⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐶 ) ) |
15 |
14 3
|
eqtr4d |
⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ≤ ) |
16 |
15
|
xpeq1d |
⊢ ( 𝜑 → ( ( le ‘ 𝐾 ) × { 1o } ) = ( ≤ × { 1o } ) ) |
17 |
7 12 16
|
3eqtr2rd |
⊢ ( 𝜑 → ( ≤ × { 1o } ) = ( Hom ‘ 𝐶 ) ) |