Metamath Proof Explorer


Theorem prstchomval

Description: Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c
|- ( ph -> C = ( ProsetToCat ` K ) )
prstcnid.k
|- ( ph -> K e. Proset )
prstchomval.l
|- ( ph -> .<_ = ( le ` C ) )
Assertion prstchomval
|- ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) )

Proof

Step Hyp Ref Expression
1 prstcnid.c
 |-  ( ph -> C = ( ProsetToCat ` K ) )
2 prstcnid.k
 |-  ( ph -> K e. Proset )
3 prstchomval.l
 |-  ( ph -> .<_ = ( le ` C ) )
4 homid
 |-  Hom = Slot ( Hom ` ndx )
5 slotsbhcdif
 |-  ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) )
6 5 simp3i
 |-  ( Hom ` ndx ) =/= ( comp ` ndx )
7 1 2 4 6 prstcnidlem
 |-  ( ph -> ( Hom ` C ) = ( Hom ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) )
8 fvex
 |-  ( le ` K ) e. _V
9 snex
 |-  { 1o } e. _V
10 8 9 xpex
 |-  ( ( le ` K ) X. { 1o } ) e. _V
11 4 setsid
 |-  ( ( K e. Proset /\ ( ( le ` K ) X. { 1o } ) e. _V ) -> ( ( le ` K ) X. { 1o } ) = ( Hom ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) )
12 2 10 11 sylancl
 |-  ( ph -> ( ( le ` K ) X. { 1o } ) = ( Hom ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) )
13 eqidd
 |-  ( ph -> ( le ` K ) = ( le ` K ) )
14 1 2 13 prstcleval
 |-  ( ph -> ( le ` K ) = ( le ` C ) )
15 14 3 eqtr4d
 |-  ( ph -> ( le ` K ) = .<_ )
16 15 xpeq1d
 |-  ( ph -> ( ( le ` K ) X. { 1o } ) = ( .<_ X. { 1o } ) )
17 7 12 16 3eqtr2rd
 |-  ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) )