Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
|- ( ph -> C = ( ProsetToCat ` K ) ) |
2 |
|
prstcnid.k |
|- ( ph -> K e. Proset ) |
3 |
|
prstchomval.l |
|- ( ph -> .<_ = ( le ` C ) ) |
4 |
|
homid |
|- Hom = Slot ( Hom ` ndx ) |
5 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
6 |
5
|
simp3i |
|- ( Hom ` ndx ) =/= ( comp ` ndx ) |
7 |
1 2 4 6
|
prstcnidlem |
|- ( ph -> ( Hom ` C ) = ( Hom ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) ) |
8 |
|
fvex |
|- ( le ` K ) e. _V |
9 |
|
snex |
|- { 1o } e. _V |
10 |
8 9
|
xpex |
|- ( ( le ` K ) X. { 1o } ) e. _V |
11 |
4
|
setsid |
|- ( ( K e. Proset /\ ( ( le ` K ) X. { 1o } ) e. _V ) -> ( ( le ` K ) X. { 1o } ) = ( Hom ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) ) |
12 |
2 10 11
|
sylancl |
|- ( ph -> ( ( le ` K ) X. { 1o } ) = ( Hom ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) ) |
13 |
|
eqidd |
|- ( ph -> ( le ` K ) = ( le ` K ) ) |
14 |
1 2 13
|
prstcleval |
|- ( ph -> ( le ` K ) = ( le ` C ) ) |
15 |
14 3
|
eqtr4d |
|- ( ph -> ( le ` K ) = .<_ ) |
16 |
15
|
xpeq1d |
|- ( ph -> ( ( le ` K ) X. { 1o } ) = ( .<_ X. { 1o } ) ) |
17 |
7 12 16
|
3eqtr2rd |
|- ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) ) |