Metamath Proof Explorer


Theorem prstchomval

Description: Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φKProset
prstchomval.l φ˙=C
Assertion prstchomval φ˙×1𝑜=HomC

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φKProset
3 prstchomval.l φ˙=C
4 homid Hom=SlotHomndx
5 slotsbhcdif BasendxHomndxBasendxcompndxHomndxcompndx
6 5 simp3i Homndxcompndx
7 1 2 4 6 prstcnidlem φHomC=HomKsSetHomndxK×1𝑜
8 fvex KV
9 snex 1𝑜V
10 8 9 xpex K×1𝑜V
11 4 setsid KProsetK×1𝑜VK×1𝑜=HomKsSetHomndxK×1𝑜
12 2 10 11 sylancl φK×1𝑜=HomKsSetHomndxK×1𝑜
13 eqidd φK=K
14 1 2 13 prstcleval φK=C
15 14 3 eqtr4d φK=˙
16 15 xpeq1d φK×1𝑜=˙×1𝑜
17 7 12 16 3eqtr2rd φ˙×1𝑜=HomC