Metamath Proof Explorer


Theorem prstcprs

Description: The category is a preordered set. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φ K Proset
Assertion prstcprs φ C Proset

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φ K Proset
3 eqidd φ Base K = Base K
4 1 2 3 prstcbas φ Base K = Base C
5 eqidd φ K = K
6 1 2 5 prstcleval φ K = C
7 fvex Could not format ( ProsetToCat ` K ) e. _V : No typesetting found for |- ( ProsetToCat ` K ) e. _V with typecode |-
8 1 7 eqeltrdi φ C V
9 4 6 8 isprsd φ C Proset x Base K y Base K z Base K x K x x K y y K z x K z
10 3 5 2 isprsd φ K Proset x Base K y Base K z Base K x K x x K y y K z x K z
11 9 10 bitr4d φ C Proset K Proset
12 2 11 mpbird φ C Proset