Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
2 |
|
prstcnid.k |
⊢ ( 𝜑 → 𝐾 ∈ Proset ) |
3 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) |
4 |
1 2 3
|
prstcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐶 ) ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) ) |
6 |
1 2 5
|
prstcleval |
⊢ ( 𝜑 → ( le ‘ 𝐾 ) = ( le ‘ 𝐶 ) ) |
7 |
|
fvex |
⊢ ( ProsetToCat ‘ 𝐾 ) ∈ V |
8 |
1 7
|
eqeltrdi |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
9 |
4 6 8
|
isprsd |
⊢ ( 𝜑 → ( 𝐶 ∈ Proset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
10 |
3 5 2
|
isprsd |
⊢ ( 𝜑 → ( 𝐾 ∈ Proset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
11 |
9 10
|
bitr4d |
⊢ ( 𝜑 → ( 𝐶 ∈ Proset ↔ 𝐾 ∈ Proset ) ) |
12 |
2 11
|
mpbird |
⊢ ( 𝜑 → 𝐶 ∈ Proset ) |