| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prstcnid.c |
|- ( ph -> C = ( ProsetToCat ` K ) ) |
| 2 |
|
prstcnid.k |
|- ( ph -> K e. Proset ) |
| 3 |
|
eqidd |
|- ( ph -> ( Base ` K ) = ( Base ` K ) ) |
| 4 |
1 2 3
|
prstcbas |
|- ( ph -> ( Base ` K ) = ( Base ` C ) ) |
| 5 |
|
eqidd |
|- ( ph -> ( le ` K ) = ( le ` K ) ) |
| 6 |
1 2 5
|
prstcleval |
|- ( ph -> ( le ` K ) = ( le ` C ) ) |
| 7 |
|
fvex |
|- ( ProsetToCat ` K ) e. _V |
| 8 |
1 7
|
eqeltrdi |
|- ( ph -> C e. _V ) |
| 9 |
4 6 8
|
isprsd |
|- ( ph -> ( C e. Proset <-> A. x e. ( Base ` K ) A. y e. ( Base ` K ) A. z e. ( Base ` K ) ( x ( le ` K ) x /\ ( ( x ( le ` K ) y /\ y ( le ` K ) z ) -> x ( le ` K ) z ) ) ) ) |
| 10 |
3 5 2
|
isprsd |
|- ( ph -> ( K e. Proset <-> A. x e. ( Base ` K ) A. y e. ( Base ` K ) A. z e. ( Base ` K ) ( x ( le ` K ) x /\ ( ( x ( le ` K ) y /\ y ( le ` K ) z ) -> x ( le ` K ) z ) ) ) ) |
| 11 |
9 10
|
bitr4d |
|- ( ph -> ( C e. Proset <-> K e. Proset ) ) |
| 12 |
2 11
|
mpbird |
|- ( ph -> C e. Proset ) |