Metamath Proof Explorer


Theorem prstcthin

Description: The preordered set is equipped with a thin category. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
prstcnid.k ( 𝜑𝐾 ∈ Proset )
Assertion prstcthin ( 𝜑𝐶 ∈ ThinCat )

Proof

Step Hyp Ref Expression
1 prstcnid.c ( 𝜑𝐶 = ( ProsetToCat ‘ 𝐾 ) )
2 prstcnid.k ( 𝜑𝐾 ∈ Proset )
3 eqidd ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) )
4 eqidd ( 𝜑 → ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) )
5 1 2 4 prstchomval ( 𝜑 → ( ( le ‘ 𝐶 ) × { 1o } ) = ( Hom ‘ 𝐶 ) )
6 ovex ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) ∈ V
7 0ex ∅ ∈ V
8 ccoid comp = Slot ( comp ‘ ndx )
9 8 setsid ( ( ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) ∈ V ∧ ∅ ∈ V ) → ∅ = ( comp ‘ ( ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ∅ ⟩ ) ) )
10 6 7 9 mp2an ∅ = ( comp ‘ ( ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ∅ ⟩ ) )
11 1 2 prstcval ( 𝜑𝐶 = ( ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ∅ ⟩ ) )
12 11 fveq2d ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( ( 𝐾 sSet ⟨ ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ∅ ⟩ ) ) )
13 10 12 eqtr4id ( 𝜑 → ∅ = ( comp ‘ 𝐶 ) )
14 1 2 prstcprs ( 𝜑𝐶 ∈ Proset )
15 3 5 13 4 14 prsthinc ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ∅ ) ) )
16 15 simpld ( 𝜑𝐶 ∈ ThinCat )