Step |
Hyp |
Ref |
Expression |
1 |
|
prstcnid.c |
⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
2 |
|
prstcnid.k |
⊢ ( 𝜑 → 𝐾 ∈ Proset ) |
3 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) |
4 |
|
eqidd |
⊢ ( 𝜑 → ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) ) |
5 |
1 2 4
|
prstchomval |
⊢ ( 𝜑 → ( ( le ‘ 𝐶 ) × { 1o } ) = ( Hom ‘ 𝐶 ) ) |
6 |
|
ovex |
⊢ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ∈ V |
7 |
|
0ex |
⊢ ∅ ∈ V |
8 |
|
ccoid |
⊢ comp = Slot ( comp ‘ ndx ) |
9 |
8
|
setsid |
⊢ ( ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ∈ V ∧ ∅ ∈ V ) → ∅ = ( comp ‘ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) ) |
10 |
6 7 9
|
mp2an |
⊢ ∅ = ( comp ‘ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
11 |
1 2
|
prstcval |
⊢ ( 𝜑 → 𝐶 = ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) ) |
13 |
10 12
|
eqtr4id |
⊢ ( 𝜑 → ∅ = ( comp ‘ 𝐶 ) ) |
14 |
1 2
|
prstcprs |
⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
15 |
3 5 13 4 14
|
prsthinc |
⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ∅ ) ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |