| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indthinc.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 2 |
|
prsthinc.h |
⊢ ( 𝜑 → ( ≤ × { 1o } ) = ( Hom ‘ 𝐶 ) ) |
| 3 |
|
prsthinc.o |
⊢ ( 𝜑 → ∅ = ( comp ‘ 𝐶 ) ) |
| 4 |
|
prsthinc.l |
⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) |
| 5 |
|
prsthinc.p |
⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
| 6 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ≤ × { 1o } ) = ( ≤ × { 1o } ) ) |
| 7 |
6
|
f1omo |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 8 |
|
df-ov |
⊢ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) = ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) |
| 9 |
8
|
eleq2i |
⊢ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ↔ 𝑓 ∈ ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 10 |
9
|
mobii |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 11 |
7 10
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ) |
| 12 |
|
biid |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) |
| 13 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 14 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 16 |
|
eqid |
⊢ ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) |
| 17 |
15 16
|
prsref |
⊢ ( ( 𝐶 ∈ Proset ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ( le ‘ 𝐶 ) 𝑦 ) |
| 18 |
5 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ( le ‘ 𝐶 ) 𝑦 ) |
| 19 |
14 18
|
sylbida |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ( le ‘ 𝐶 ) 𝑦 ) |
| 20 |
4
|
breqd |
⊢ ( 𝜑 → ( 𝑦 ≤ 𝑦 ↔ 𝑦 ( le ‘ 𝐶 ) 𝑦 ) ) |
| 21 |
20
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑦 ) → 𝑦 ≤ 𝑦 ) |
| 22 |
19 21
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ≤ 𝑦 ) |
| 23 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ≤ × { 1o } ) = ( ≤ × { 1o } ) ) |
| 24 |
|
1oex |
⊢ 1o ∈ V |
| 25 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 1o ∈ V ) |
| 26 |
|
1n0 |
⊢ 1o ≠ ∅ |
| 27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 1o ≠ ∅ ) |
| 28 |
23 25 27
|
fvconstr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ≤ 𝑦 ↔ ( 𝑦 ( ≤ × { 1o } ) 𝑦 ) = 1o ) ) |
| 29 |
22 28
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( ≤ × { 1o } ) 𝑦 ) = 1o ) |
| 30 |
13 29
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∅ ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑦 ) ) |
| 31 |
|
0ov |
⊢ ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) = ∅ |
| 32 |
31
|
oveqi |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ( 𝑔 ∅ 𝑓 ) |
| 33 |
|
0ov |
⊢ ( 𝑔 ∅ 𝑓 ) = ∅ |
| 34 |
32 33
|
eqtri |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ∅ |
| 35 |
34 13
|
eqeltri |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) ∈ 1o |
| 36 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝜑 ) |
| 37 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝐶 ∈ Proset ) |
| 38 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) |
| 39 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
| 40 |
38 14 39
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 41 |
40
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
| 42 |
41
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
| 43 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( ≤ × { 1o } ) = ( ≤ × { 1o } ) ) |
| 44 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ) |
| 45 |
43 44
|
fvconstr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ≤ 𝑦 ) |
| 46 |
4
|
breqd |
⊢ ( 𝜑 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) |
| 47 |
46
|
biimpd |
⊢ ( 𝜑 → ( 𝑥 ≤ 𝑦 → 𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) |
| 48 |
36 45 47
|
sylc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ( le ‘ 𝐶 ) 𝑦 ) |
| 49 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) |
| 50 |
43 49
|
fvconstr2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑦 ≤ 𝑧 ) |
| 51 |
4
|
breqd |
⊢ ( 𝜑 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) |
| 52 |
51
|
biimpd |
⊢ ( 𝜑 → ( 𝑦 ≤ 𝑧 → 𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) |
| 53 |
36 50 52
|
sylc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑦 ( le ‘ 𝐶 ) 𝑧 ) |
| 54 |
15 16
|
prstr |
⊢ ( ( 𝐶 ∈ Proset ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) → 𝑥 ( le ‘ 𝐶 ) 𝑧 ) |
| 55 |
37 42 48 53 54
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ( le ‘ 𝐶 ) 𝑧 ) |
| 56 |
4
|
breqd |
⊢ ( 𝜑 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ( le ‘ 𝐶 ) 𝑧 ) ) |
| 57 |
56
|
biimprd |
⊢ ( 𝜑 → ( 𝑥 ( le ‘ 𝐶 ) 𝑧 → 𝑥 ≤ 𝑧 ) ) |
| 58 |
36 55 57
|
sylc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ≤ 𝑧 ) |
| 59 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 1o ∈ V ) |
| 60 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 1o ≠ ∅ ) |
| 61 |
43 59 60
|
fvconstr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑥 ≤ 𝑧 ↔ ( 𝑥 ( ≤ × { 1o } ) 𝑧 ) = 1o ) ) |
| 62 |
58 61
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑥 ( ≤ × { 1o } ) 𝑧 ) = 1o ) |
| 63 |
35 62
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑧 ) ) |
| 64 |
1 2 11 3 5 12 30 63
|
isthincd2 |
⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ ∅ ) ) ) |