Metamath Proof Explorer


Theorem f1omo

Description: There is at most one element in the function value of a constant function whose output is 1o . (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi assuming ax-un (see f1omoALT ). (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypothesis f1omo.1 ( 𝜑𝐹 = ( 𝐴 × { 1o } ) )
Assertion f1omo ( 𝜑 → ∃* 𝑦 𝑦 ∈ ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 f1omo.1 ( 𝜑𝐹 = ( 𝐴 × { 1o } ) )
2 1oex 1o ∈ V
3 eqid ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 )
4 2 3 fvconst0ci ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o )
5 mo0 ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) )
6 el1o ( 𝑦 ∈ 1o𝑦 = ∅ )
7 el1o ( 𝑥 ∈ 1o𝑥 = ∅ )
8 eqtr3 ( ( 𝑦 = ∅ ∧ 𝑥 = ∅ ) → 𝑦 = 𝑥 )
9 6 7 8 syl2anb ( ( 𝑦 ∈ 1o𝑥 ∈ 1o ) → 𝑦 = 𝑥 )
10 9 gen2 𝑦𝑥 ( ( 𝑦 ∈ 1o𝑥 ∈ 1o ) → 𝑦 = 𝑥 )
11 eleq1w ( 𝑦 = 𝑥 → ( 𝑦 ∈ 1o𝑥 ∈ 1o ) )
12 11 mo4 ( ∃* 𝑦 𝑦 ∈ 1o ↔ ∀ 𝑦𝑥 ( ( 𝑦 ∈ 1o𝑥 ∈ 1o ) → 𝑦 = 𝑥 ) )
13 10 12 mpbir ∃* 𝑦 𝑦 ∈ 1o
14 eleq2w2 ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ( 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ↔ 𝑦 ∈ 1o ) )
15 14 mobidv ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ( ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ↔ ∃* 𝑦 𝑦 ∈ 1o ) )
16 13 15 mpbiri ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) )
17 5 16 jaoi ( ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ) → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) )
18 4 17 ax-mp ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 )
19 1 fveq1d ( 𝜑 → ( 𝐹𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) )
20 19 eleq2d ( 𝜑 → ( 𝑦 ∈ ( 𝐹𝑋 ) ↔ 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) )
21 20 mobidv ( 𝜑 → ( ∃* 𝑦 𝑦 ∈ ( 𝐹𝑋 ) ↔ ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) )
22 18 21 mpbiri ( 𝜑 → ∃* 𝑦 𝑦 ∈ ( 𝐹𝑋 ) )