| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1omo.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝐴 × { 1o } ) ) |
| 2 |
|
1oex |
⊢ 1o ∈ V |
| 3 |
|
eqid |
⊢ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) |
| 4 |
2 3
|
fvconst0ci |
⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ) |
| 5 |
|
mo0 |
⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 6 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 7 |
6
|
eqeq2i |
⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ↔ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = { ∅ } ) |
| 8 |
|
mosn |
⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = { ∅ } → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 9 |
7 8
|
sylbi |
⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 10 |
5 9
|
jaoi |
⊢ ( ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ) → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 11 |
4 10
|
ax-mp |
⊢ ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) |
| 12 |
1
|
fveq1d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 13 |
12
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) ) |
| 14 |
13
|
mobidv |
⊢ ( 𝜑 → ( ∃* 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) ) |
| 15 |
11 14
|
mpbiri |
⊢ ( 𝜑 → ∃* 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ) |