| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1omo.1 |
|- ( ph -> F = ( A X. { 1o } ) ) |
| 2 |
|
1oex |
|- 1o e. _V |
| 3 |
|
eqid |
|- ( ( A X. { 1o } ) ` X ) = ( ( A X. { 1o } ) ` X ) |
| 4 |
2 3
|
fvconst0ci |
|- ( ( ( A X. { 1o } ) ` X ) = (/) \/ ( ( A X. { 1o } ) ` X ) = 1o ) |
| 5 |
|
mo0 |
|- ( ( ( A X. { 1o } ) ` X ) = (/) -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 6 |
|
df1o2 |
|- 1o = { (/) } |
| 7 |
6
|
eqeq2i |
|- ( ( ( A X. { 1o } ) ` X ) = 1o <-> ( ( A X. { 1o } ) ` X ) = { (/) } ) |
| 8 |
|
mosn |
|- ( ( ( A X. { 1o } ) ` X ) = { (/) } -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 9 |
7 8
|
sylbi |
|- ( ( ( A X. { 1o } ) ` X ) = 1o -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 10 |
5 9
|
jaoi |
|- ( ( ( ( A X. { 1o } ) ` X ) = (/) \/ ( ( A X. { 1o } ) ` X ) = 1o ) -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 11 |
4 10
|
ax-mp |
|- E* y y e. ( ( A X. { 1o } ) ` X ) |
| 12 |
1
|
fveq1d |
|- ( ph -> ( F ` X ) = ( ( A X. { 1o } ) ` X ) ) |
| 13 |
12
|
eleq2d |
|- ( ph -> ( y e. ( F ` X ) <-> y e. ( ( A X. { 1o } ) ` X ) ) ) |
| 14 |
13
|
mobidv |
|- ( ph -> ( E* y y e. ( F ` X ) <-> E* y y e. ( ( A X. { 1o } ) ` X ) ) ) |
| 15 |
11 14
|
mpbiri |
|- ( ph -> E* y y e. ( F ` X ) ) |