Step |
Hyp |
Ref |
Expression |
1 |
|
fvconst0ci.1 |
|- B e. _V |
2 |
|
fvconst0ci.2 |
|- Y = ( ( A X. { B } ) ` X ) |
3 |
|
dmxpss |
|- dom ( A X. { B } ) C_ A |
4 |
3
|
sseli |
|- ( X e. dom ( A X. { B } ) -> X e. A ) |
5 |
1
|
fvconst2 |
|- ( X e. A -> ( ( A X. { B } ) ` X ) = B ) |
6 |
4 5
|
syl |
|- ( X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = B ) |
7 |
2 6
|
eqtrid |
|- ( X e. dom ( A X. { B } ) -> Y = B ) |
8 |
7
|
olcd |
|- ( X e. dom ( A X. { B } ) -> ( Y = (/) \/ Y = B ) ) |
9 |
|
ndmfv |
|- ( -. X e. dom ( A X. { B } ) -> ( ( A X. { B } ) ` X ) = (/) ) |
10 |
2 9
|
eqtrid |
|- ( -. X e. dom ( A X. { B } ) -> Y = (/) ) |
11 |
10
|
orcd |
|- ( -. X e. dom ( A X. { B } ) -> ( Y = (/) \/ Y = B ) ) |
12 |
8 11
|
pm2.61i |
|- ( Y = (/) \/ Y = B ) |