Metamath Proof Explorer


Theorem fvconst0ci

Description: A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses fvconst0ci.1 B V
fvconst0ci.2 Y = A × B X
Assertion fvconst0ci Y = Y = B

Proof

Step Hyp Ref Expression
1 fvconst0ci.1 B V
2 fvconst0ci.2 Y = A × B X
3 dmxpss dom A × B A
4 3 sseli X dom A × B X A
5 1 fvconst2 X A A × B X = B
6 4 5 syl X dom A × B A × B X = B
7 2 6 eqtrid X dom A × B Y = B
8 7 olcd X dom A × B Y = Y = B
9 ndmfv ¬ X dom A × B A × B X =
10 2 9 eqtrid ¬ X dom A × B Y =
11 10 orcd ¬ X dom A × B Y = Y = B
12 8 11 pm2.61i Y = Y = B